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ABSTRACT 

Various methods of constructing a set of mutually orthogonal latin squares 

are presented and the theoretical aspects of various methods are discussed. 

Illustrative examples of constructing latin squares and sets of mutually ortho- 

gonal latin squares are given.   The methods of constructing latin squares and 

sets of orthogonal latin squares are complete and partial confounding, frac- 

tional replication, analysis of variance, group, projecting diagonals, ortho- 

morphlsm, pairwise balanced design, oval, code, product composition, and 

sum composition.   The methods of construction designated as partial confound- 

ing, fractional replication, analysis of variance, and sum composition appear 

not to have been discussed previously in the literature.   The methods of 

complete confounding and of projecting diagonals have been discussed; the 

actual construction procedure has been illustrated with several examples. 

The sum composition method has interesting consequences in combinatorial 

theory as well as in the construction of orthogonal latin squares.   Lastly, 

equivalences of fourteen combinatorial systems to orthogonality in latin squares 

has been investigated and described. 
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SOME TECHNIQUES FOR CONSTRUCTING MUTUALLY 
ORTHOGONAL LATIN SQUARES 

12 3 
W. T.  Federer , A. Hedayat , E. T.  Parker 

4 5 6 
B. L. Raktoe , Esther Seiden , and R. J. Turyn 

I.   Introduction and Some Terminology 

The purpose of this paper is to present a set of methods for constructing 

mutually orthogonal latin squa-es and to exhibit some squares produced by each 

of the methods.   The set of methods presented herein was discussed in a series 

of informal seminars held during the weeks of July 14-18 and 21-25, 1969, by the 

authors at Cornell University.   The motivation for these discussion was derived 

from results obtained by Hedayat [1969] and from the optimism of the authors. 

New procedures for constructing a set of mutually orthogonal latin squares and 

new views of present methods of construction were desired in order to advance the 

theory of mutual orthogonality in latin squares. 

Professor of Biological Statistics, Cornell University and Visiting Professor, 
Mathematics Research Center, University of Wisconsin (on sabbatical leave 
1969-70). 
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Assistant Professor, Cornell University. 
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Professor of Mathematics, University of Illinois, and Visiting Professor, 
Cornell University (July, 1969). 
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Associate Professor, University of Guelph and Visiting Associate Professor, 
Cornell University (January to August, 1969). 
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Professor, Michigan State University,  and Visiting Professor, Cornell Uni- 
versity (June, July, August, 1969). 
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Mathematician, Raytheon Corporation, and Visiting Professor, Cornell Uni- 
versity (July, 1969). 

Sponsored by the United States Army under Contract No.:   DA-31-124-ARO-D- 
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As may be noted from the table of contents, the different sections were 

written by different authors.   An attempt was made to have a consistent notation 

and a uniform style.   Although much more work is required to finalize the method 

in several of the sections enough is known about the method to use it to con- 

struct a latin square of any order or to construct a set of two or more mutually 

orthogonal latin squares.   Also, a number of equivalences may be noted for some 

of the methods. 

The theory of mutual orthogonality in latin squares has application in the 

construction of rtnny classes of experiment designs and in many combinatorial 

systems.   The latter subject is discussed in section XV where the equivalences 

of various combinatorial systems are presented.   With regard to the former sub- 

ject, there is an ever present need for new experiment designs for new experi- 

mental situations in order for the experimenter not to have to conduct his ex- 

periment to fit known experiment designs. 

Some of the notation and terminology that will be utilized is presented 

below. 

Definition 1,1.   A latin square of order  n  on a set   £ with   n   distinct elements 

is an   n X n   matrix each of whose rows and columns is a permutation of the set 

2. 
Example; 

is a latin square of order   3  on   ^ ft»2»3)  • 
1 2 3 
2 3 1 
3 1 2 
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Definition 1.2.    Two latin squares   L. = (a,,)   and   Ln = (b.J   of order  n   are 

2 
said to be orthogonal if the  n     ordered p.iirs   (a,,,b,.)   (i,j = l,2,...,n)  are 

all distinct.    Note that   L.   and   L     need not be defined on the same set. 

Example; 

1 2 3 
and 

A R Q 
2 3 1 C A B 
3 1 2 B C A 

Definition I. 3.   The members of a set of  t   latin squares   L., L  , ... , L    of 

order n  are said to be mutually (pairwise) orthogonal if   L.   is orthogonal to 

L,,   i^j,   1,j = 1,2,... ,t   .   Hereafter by an  0(n,t)  set we mean a set con- 

sisting of  t   mutually orthogonal latin squares of on: r  n . 

Example; 

1 2 3 4 

> 

1 2 3 4 

, and 

1 2 3 4 
T 1 ■T- 3 4' 3 2 1 3 4 1 2 
3 4 1 2 2 1 4 3 4 3 2 1 
4 3 2 1 3 4 i 2 2 1 4 3 

Latin squares and orthogonal latin squares have at least  187   years of history. 

Hedayat [1969], Section IX has presented a reasonably good picture of this 

history which will not be repeated here.    It is planned to prepare a historical 

account of developments related to orthogonality in latin squares and to publish 

this material together with a bibliography elsewhere. 

#1030 -3- 



II.   Factorial Confounding Construction of  0(nft) Sets 

II. 1.    Complete Confounding 

A factorial treatment design consists of all possible combinations of two 

or more factors each at two or more levels.   The set of all combinations of  m 

factors each at   n   levels is denoted as an   n     factorial; for  n  a prime power 

the main effects and interaction effects in an  n     factorial are in a   1:1   cor- 

respondence with the points of the finite projective geometry  PG(m- l,n) .   For 

2 
example, the  n    factorial consists of two main effects, say A and   B with 

levels   (A)    and   (B)    respectively,   i,j = 0,1,2,... ,n-l,   and  n-1  two facto»- 
u u 

interactions  AB S,   s =l,2,...,n-l  with levels   (AB    ) for  u   +u u   » 
i    s j J 

u-, u,, u-, ..., u    .   where the  u.  are elements of the Galois field   GF(n) , 0'   1'   2*        '    n-1 i 

and the  n + 1  effects are in a   1:1  correspondence with the points of  PG(l,n) . 

Each of the  n + 1  effects is associated with a set of  n-1  single-degree-of- 

2 
freedom-contrast parameters making a total of   {n + l)(n-l) = n  -1  parameters; 

2 
if the mean is adjoined to the set of contrasts then the  n     single-degree-of- 

freedom-contrast parameters are in a   1:1  correspondence with the points of the 

2 
finite Euclidean geometry   EG(2,n) .   Therefore, the n     combinations   u.u    are 

2 
in a   1:1  correspondence with the  n    single-degree-of-freedom-contrast param- 

eters in   EG(2,n) . 

For  n = 4,   the levels of the main effects and Interactions are given by 
u 2 

(A^, (B) ,   and   (AB S(, +u u .   where   u0 = 0, Uj = 1, u2 = x,   u3=l + x=x    are 
i    s j 

the marks of  GF(4),   i,j = 0, 1, 2, 3,   and   s = 1, 2, 3   .   Let   (A)    be the rows 

and   (B).   be the columns of a latin square of order   4  as follows; 

-4_ #1030 



column 1 = (B)o column 2 = ,Bli 
column 3 MB), column 4 = (B)3 

row 1 = (A)0 00 01 02 03 

row 2 = (A) 10 11 12 13 

row 3 = (A) 20 21 22 23 

row 4 = (A) 30 31 32 33 

In the above only the subscript of the combination   u.u,   and of the effects   A  and 

B  is given for each row-column intersection.    Thus,    (A)      - (&)     consists of 
U0 

the   n=4   subscripts   00,01,02,03   of the combinations   UQUQ, u0U,, UQU^, UQU^ • 

The remaining levels are similarly defined. 

A symbol in a latin square corresponds to those combinations   u.u    for 
u 

which  u   + u u    for interaction effect  AB S,   is a constant, with each constant 
i       s j 

corresponding to one of the   n   symbols in the latin square of order   n   .   Also, 

n-1  latin squares of order   n   may be formed for   s =1,2,...,   and   n-1;   this 

set of latin squares forms an   0(n, n-1)   set.    For   n = 4  the   0(4,3)   set is 

formed as follows (additional detail may be found in Mann [1949], chapter VIII, 

Kempthorne [1952], pages 331-340, and Federer [1955], chapters VII, K and XV): 

u, 
(AB 

VV, 

fu    00 + 11 + 22 + 33 - I 

u    01 + 10 + 23 + 32  * II 

u    02 +  13 + 20 + 31 - III 

\u    03 + 12 + 21 + 30 IV 

00=1 01 = 11 02=111 03=IV    | 

10=11 11 = 1 12=IV 13=111   | 

20=111 21 = IV 22=1 23=11     | 

30 = IV 31 = 111 32=11 33=1 
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u2 
(AB  C) 

i     2 j 

ru000 + 13 + 21 + 32 - a 

u, 03 + 10 + 22 + 31 - p 

u2 01 + 12 + 20 + 33 - v 

ViU3 02 + 11 + 23 + 30 -*  6 

i   a Y 5 ß 

ß 5 Y a 

Y a ß 6 

6 $ a Y 

W Z X Y          | 

x Y W Z 

Y X z w     1 
1    Z w Y X          j 

'u0 00 + 12 + 23 + 31 -*W 

u I Uj   02 + 10 + 21 + 33 -X 
(AB     V+U.U, =  1 u    03 + 11 + 20 + 32 -Y 

i     3  j <i 

JLi3 01 +  13 + 22 + 30 -*Z 

where the first column to the right of the brace represents the  u,   obtained from 

the subscript. 

In the above the complete confounding scheme of sources of variation in 

the   0(4, 3) set and the effects in the factorial may be illustrated in the following 

analysis of variance table wherein the total sum of squares has been orthogonally 

decomposed into the sums of squares related to the above confounding scheme as 

follows : 
Source of variation 

Correction for mean 

Rows = A effect 

Columns = B effect 
u 

1. 
Roman numbers = (AB   ) effect 

U2 
Greek letters = (AB    ) effect 

u3 
Latin letters = (AB    ) effect 

Degrees of freedom 

1 

3 

3 

3 

3 

Total 16 

Instead of relating the mutually orthogonal latin squares of order   4  to a 

2 4 
4      factorial we may relate them to a   2    factorial in the following manner, i. e., 

we consider  EG(4,2)and   GF(2) with elements   0   and   1  .   Let the   16  row-column 

intersections be numbered as follows: 
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column 

row 1 I 3 4 

1 0000 0001 0010 0011 

2 0100 0101 0110 on i 

3 1000 1001 1010 ion 

4 1100 1101 1110 mi 

where the subscripts in the above table represent the combination   a b. c.d,   of 
g h i j 

if. 
the factors   a, b, c,   and  d  with two levels   (0 and 1)   each.   The rows correspond 

to factorial effects   A, B, and AB  and the columns correspond to factorial effects 

C, D, and CD .   (This form of constructing latin squares has been used by Fisher 

and Yates [1957]  for latin squares of order 8 and by Federer [1955]).   Then, let 

the symbols in the 3 latin squares be represented by the foJiowing scheme: 
Factorial generators 

(AC)0, (BD)0, (ABCD)0 

(AC)0, (BD)^ (ABCD)1 

(AOj, (BD)0, (ABCD)1 

(AOj, (BD)^ (ABCD)0 

Combinations 

oooo + oioi + loio + mi = I 

0001 + 0100 + 1011 + 1110 = II 

0010 + 0111 + 1000 -t 1101 = III 

0011 + 0110 + 1001 + 1100 = IV 

latin squares 

I II III IV 

II I IV III 

III IV I II 

IV III II I 

0000 + 0110 + 1011 + 1101 = w 

ooio + oioo + looi + mi = x 

0001 + 0111 + 1010 *r  1100 = z 

(AD)^ (ABOj, (BCD)0 0101 + 0011 + 1000 + 1110 = Y 

(AD)0, (ABC)0, (BCD)0 

(AD)0, (ABOj, (BCD)1 

(AD)^ (ABC)0, {BCD)1 

w z X Y 

X Y w z 

Y X z w 

z w Y X 

(ACD)0, (BC)0, (ABD)0 

(ACD)0, (BOj, (ABD)1 

(ACD)^ (BC)0, (ABD)1 

(ACD)^ (10)j, (ABD)0 

0000 + 0111 + 1110 + 1001  = a 

1010 + 0100 + 0011   +1101 = ß 

looo + ono + mi + oooi = v 
0010 + 0101 + 1011 + 1100 =   6 

a V 6 ß 
ß 6 V a 

V a ß 6 

6 '? a V 

*   Note:   Some authors use lower case letters to denote the factors and capital 
letters to denote effects or levels of effects; we follow that usage here. 

#1030 -7. 



The correspondence of the latin squares obtained from complete confound- 

2 4 
ing considering a   4    factorial and considering a   2     factorial is demonstrated 

in the following analysis of variance table: 

Source of variation degrees of freedom 

Correction for mean 
Rows                = A effect in r   factorial 

1 
3 

A effect in 24 factorial 
B      "       " 24       " 

AB      "       " 24 

Columns          = B effect in 4   factorial 3 
C effect in 24 factorial 
D      "      " 24       " 

CD      "      "24        " 
l;l                    2 

Roman numbers 9 ^ü     effect in 4   factorial 3 

AC effect in 24 factorial 
BD    "       "   24      " 

ABCD    "       "   24 

11 

2                           f 
Greek letters = AB     effect in 4^ factorial 3 

ACD effect in 24 factorial 

BC       "      "24          " 

ABD       "      M24 

u3                     2 
Latin letters  = AB     effect in 4   factorial 3 

AD effect in 24 factorial 

ABC      "      "24 

BCD       "      " 24          " 

Total 16 

4 
It should be noted here that the effects in the  2    map directly into the 

2 2 
4     projective geometry or   PG(1,2 ) ,   Likewise, even though one more set of 

generators is available, viz. 

-8- #1030 



Generators interaction 

Roman numbers = AD, BC ABCD 

Greek letters     = AC, ABD BCD 

Latin letters       = BD, ABC ACD 

the three orthogonal latin squares produced are the same ones.   Since the third 

effect above is obtained as the product of two generators (exponents mod 2) we 

need consider only two generators.   Multiplying these by   CD (exponents mod 2) 

we obtain the generators of the preceding scheme.   Hence, even though two dif - 

ferent complete confounding schemes are available there is a simple one-to-one 

mapping of one set into the other set.   Although nothing interesting turns up here, 

it would be interesting to study the various complete confounding schemes in the 

4 latin square of order  9   as related to the   3     factorial. 

As a second illustration of the use of complete confounding to construct 

latin squares, let us consider a    latin square of order   6 .   Using the notation 

and concepts of Raktoe [1969]  on mixed prime factorials as related to rings and 

2 2      2 
elements of Ideals in the rings we designate the 6    as a   2 (3)     factorial and 

represent a combination by  ghij   where   g, h   are members of the ideal  I (3) and 

2 2 
i,j   are members of the ideal  I (4) .   The effects in the   2   and in the 3    factorials 

are denoted respecrtively by: 

.3 ^4 
A C 

3 4 
B D 

3   3 4   4 
AB        CD 

4   2 
C D 

The remaining interactions are given below in the analysis of variance table: 

#1030 -9- 



Source of variation 

Correction for mean 

Rows = A C 

C 

A3XC4 

^  , o3^4 Columns = B D 

Degrees of freedom 

1 

5 

1 

2 

2 

D 

B3XD4 

Treatments or sy 

AV 

cV 
AV X C4D4 

Remainder 

cV 
A3XD4 

A3 X C4D4 

A3 X cV 

B3XC4 

B3 X 04D4 

B3 X C4D2 

A3B3 X C4 

A3B3 X  D4 

A3B3 X C4D2 

3_3_i   4 

2 

2 

2 

2 

2 

2 

2 

2 

2 

10- 

Total 36 
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Let us now set up the 6 rows and the 6 columns of a latin square of order 

6 with the corresponding designation of the 36 combinations as follows: 

Columns 

Rows ,Bv,0 V3D\ <BV.2 
(BV,3 <BV)4 (BV.5 

(AV)O 0000 0304 0002 0300 0004 0302 

(AV^ 3040 3344 3042 3340 3044 3342        1 

(AV)2 0020 0324 0022 0320 0024 0322 

(A3C4,3 3000 3304 3002 3300 3004 3302 

(AV,4 0040 0344 0042 0340 0044 0342 

(A3C4)5 3020 3324 3022 3320 3024 3322        1 

3   3   4   4 
Now let the levels of  A B C D     correspond to the symbols in a latin 

square of order 6 as follows: 

Levels 

/R3n3 ^4   4 
(A B C D ) 

.R3n3^4   4X (A B  C D ) 

/«3n3   44 
(A B  C D ), 

i 
^3,3   44 
(A B  C D  ). 

(AVC
4
D\ 

(AVC
4
DV 

Combination for which 3q+3h-f4i+4j. mod 6. is constant Symbol 

0000 + 3342 + 0024 + 3300 + 0042 + 3324      -      0 

0304 + 3040 + 0322 + 3004 + 0340 + 3022 

0002 + 3344 + 0020 + 3302 + 0044 + 3320 

0300 + 3042 + 0324 + 3000 + 0342 + 3024 

0004 + 3340 + 0022 + 3304 + 0040 + 3322 

0302 + 3044 + 0320 + 3002 + 0344 + 3020 

1 

2 

3 

4 

#1030 -11- 



This produces the following latin square of order 6: 

i   0 1 2 3 4 5     | 

1 2 3 4 5 0 

2 3 4 5 0 1     1 
3 4 5 0 1 2     1 
4 5 0 1 2 3     | 

5 0 1 2 3 4     1 

3  3   4   2 
Alternatively we could have used levels of  A B C D    to construct the 

following latin square   of order 6: 

Levels Combinations for which   3g+3h+4i-i-2j, mod 6.is constant Symbol 

(AVCV), 
(AVCV), 
(AVCV) 
/R3F,3 4 2/ 
(A B  C  D  ). 

(A B  C D  )^ 
/R

3n3^4 2 ' 
(A B  C  D  L 

0000 + 3344 + 0022 + 3300 + 0044 + 3322 

0302 + 3040 + 0324 + 3002 + 0340 + 3024 

0004 + 3342 + 0020 + 3304 + 0042 + 3320 

0300 + 3044 + 0322 + 3000 + 0344 + 3022 

0002 + 3340 + 0024 + 3302 + 0040 + 3324 

0304 + 3042 + 0320 + 3004 + 0342 + 3020 

0 

I 

2 

3 

4 

5 

latin square of order 6 

o 5 4 3 2 1    | 

1 0 5 4 3 2    j 

2 1 0 5 4 3    1 

3 2 1 0 5 4 

4 3 2 1 0 5 

,     5 4 3 2 1 0 
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Thus, the above square is simply a column permutation of the previous one.   As 

there are no other sets of 5 degrees of freedom leading to a latin square of order 
3       3 3   3 

6   (i.e. A , B , and AB   exhaust the three single degrees of freedom from the 
2 4       4       4   4 4   2 

2     factorial and   C  , D , C D , and   C D     exhaust all sets of   2   degrees of 

freedom from the   3     factorial,), it is not possible to obtain a latin square of 

order 6 orthogonal to either of the preceding ones using complete confounding 

schemes. 
5   S-.o—b     .5   5_,6   2 

For a latin square of order 10 we may use levels ofABCD,ABüD, 
CC/LO ^    S     A     4 

A B C D , or A BCD     to form four different latin squares of order 10. 

II. 2.   Partial Confounding 

In the last section use was made of complete confounding of effects in a 

factorial with the rows, columns, and symbols in a latin square.   In this section 

some of the factorial effects will be partially confounded with row (column or 

symbol) contrasts,  i.e. contrasts among levels of an effect will be completely 

confounded with a subset of the row (column or symbol) contrasts and will be 

unconfounded with the remaining contrasts,  and vice versa.   In complete con- 

founding no subset of contrasts among the levels of a factorial effect can be 

separated from contrasts among the rows (columns or symbols).   (See, e.g., 

Yates fl937]  and Federer [1955] ).   For example, the latin square of order   4 

4 
could be considered as a   2     factorial as in the preceding section, with the 

following scheme of confounding: 

Columns 

Rows 1 = (C)0 2= (C)1 3=(D)0 4»(D)] 

1  (A)0,(B)0 0000 0011 0010 0001 

2  (A)0,(B)1 0101 0110 0100 01 11 

3  (A^ , (B)0 1000 101 1 1010 1001 

4  (A)1,(B)1 1101 1110 1100 1111 
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If we set up the latin square symbols for the above as 

a ß \ 6   1 

ß a 6 V 

\ 6 ß a- 

6 V a P 

then 

the symbols correspond to the following combinations: 

a: 0000 + 0110 + 1001 + 1100 = (ABCD)    + other effects 

ß:        0011 + 0101 + 1010 + 1111  =  (ABCD)    + 

\! 1000 +  1110 + 0010 + 0111  =  (ABCD)    + 

6:        0001 + 0100 + 1011 + 1101 = (ABCD)    + 

It is known that this latin square has no ^r+hogonal mate (Hedayat [1969] ). 

This means that no orthogonal partition of the remaining sum of squares can be 

made which forms a latin square. 

If on the other hand, the latin square used is 

a ß V 6 1 

ß a 5 V 

\ 6 a ß 

6 V ß a 

, the combinations 

corresponding to the Greek letters are; 

a: 0000 + 0110 + 1010 + 1111 = (ABCD)    + other effects 

p: 0011 + 0101 + 1001 +   1100 = (ABCD)   + 

V: 0010 + 0111 + 1000+   1110 = (ABCD) 1 + (AC)   + other effects 

6: 0001 + 0100+1011+   1101 = (ABCD)    + other effects 
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This square has two mutually orthogonal mates and hence there must be partitions 

of the sums of squares into orthogonal components which correspond to the symbols 

in a latin square. 

Instead of inserting symbols in the latin square of order 4, denote the 

symbols in the latin square by the following partial confounding scheme,   where 

a fractional replicate is a subset of a complete factorial: 

i)  add the two 1/8 replicates generated by ((AL, (D)  ,  (BC)  ) and 

((A)  , (C) , (ABD^)   to obtain the 4 combinations   (0000 + OHO) + 

(1010 + 1111)  and denote these 4 combinations as symbol   a , 

ii)  add the two 1/8 replicates generated by   ((D)., (AB),, (ACL) and 

((AB)  , (C)  , (AD).)   to obtain combinations   (0101 + 1011) + (1100 + 

0001) and denote these 4 combinations as symbol   (3 , 

iii) add the two 1/8 replicates generated by   ((A)., (D)  , (ABC).)  and 

((A)  , (C),, (BD)0)  to obtain combinations   (1000 + 1110) + (0010 + 

0111) and denote these 4 as symbol   \ , 

iv) add the two 1/8 replicates generated by   ((AB)  , (AC)., (DU  and 

((AB),, (C) , (BD) )  to obtain the combinations   (1101 + 0011) + 

(0100 + 1001)  and denote these 4 as symbol   6 . 

This procedure results in the following latin square of order 4: 

a 6 V P   1 

P a 6 \ 

\ ß a 6   1 

6 \ ß a   j 
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Obviously, one could take any pair of 1/8 replicates such that the 4 combina- 

tions are in different rows and in different columns to form the combinations for 

a given symbol. 

The above type of partial confounding results in the class of latin squares 

denoted as half-plaid latin squares (See Federer il955j chapters IX and XV and 

Yates [1937]).    If partial confounding were utilized in rows as well as in columns 

the resulting square would be denoted as a plaid latin square (so-called because 

of its resemblence to plaid cloth if the effects confounded were of different colors). 

The three types of squares are illustrated below for a latin square of order 6 where 

the factorial effects are as described in statistics books (e.g. , Federer [1955]): 

Complete confounding of effects 

Columns 

Rows 
1 = 
(A)0,(C)0 

2 = 3 = 
(A)0,(C)2 

4 = 
(A^CJQ 

5 = 
(A^C^ 

6 = 
(A)2,(C)2 

1 = (B)0,(D)0 0000 0010 0020 1000 1010 1020 

2 = (B)0,(D)1 0001 0011 0021 1001 1011 1021 

3 • (B)0,(D)2 0002 0012 0022 1002 1012 1022 

4 = (B)1,(D)0 0100 0110 0120 HOG 1110 1120 

5 = (B)1,(D)1 0101 0111 0121 1101 1111 1121 

6 = (B)1,(D)2 0102 0112 0122 1102 1112 1122 

Partial confounding of effects with columns 

Columns 

Rows 1 = (C)0 2 = (C)l 3 = (C)2 4 = (CD)0 5 = (CD)1 6 = (CD)2 

l = (B)o,(D)0 0000 0010 0020 1000 1010 1020 

2 = (B)0,(D)1 0001 0011 0021 1021 1ÖÖ1 loll 

3=(B)0,(D)2 0002 0012 0022 1012 mi mt 
4 = (B)1,(D)0 1100 1110 1120 0100 OHO 0120 

5 = (B)1,(D)1 1101 1111 1121 0121 0101 0111 

6 = {B)l,(D)2 1102 1112 1122 0112 0122 0102 
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Partial confounding in both rows and columns 

Columns 
Rows 1 = (C)0 2 = (C)1 3 = (C)2 4 = (CD)0 5 = (CD)1 6 = (CD)2 

1 = (D)0 00 10 20 00 JO 20 

2 = (D)1 01 u 21 21 01 11 

3 = (D)2 02 12 22 12 22 02 

4 = (CD2)0 00 11 22 00 22 1 1 

5 = (CD^j 02 10 21 21 10 02 

6 = (CD2)2 01 12 20 12 01 20 

In the last table above only the subscripts for combinations of factors   c 

and  d  have been inserted.   There is some difficulty in inserting subscripts for 

factors   a  and  b   such that these effects are orthogonal to both rows and columns. 

In any event, this problem requires further study to determine if half-plaid latin 

squares and plaid latin squares lead to latin squares not of the same type as given 

by complete confounding.    If the three types of latin squares of order 6 can be 

produced by partial and complete confounding, this would be an interesting result. 
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III.    Fractional Reollcatlon Construction of  Ofo, t) Sets 

-1 3 
Any latin square may be considered as an   n      fraction of an   n     factorial 

where the rows represent levels of one factor, the columns represent the levels 

of the second factor, and the symbols in the latin square represent the levels of 

the third factor.   As an illustration, consider the latin square of order 3 where 

3 
the   9   combinations represent the 1/3 fraction of a   3     factorial as follows: 

Columns 

Rows 0 1 2 

0 000 012 021 

1 102 111 120 

I 201 210 222 

The above is the 1/3 fraction of a   3     corresponding to   (ABC),    .   .   „        . „ 
h+i+j = 0,moa 3 . 

Since this is a regular fraction we may write out the aliasing structure in this 

fraction as follows: 

M + ABC 

A   + AB2C2 + BC 

B   + AB  C   + AC 
2 

C  + ABC       + AB 
2 2 2 

AB   + AC    + 3C 

where tne effects connected with a plus sign are completely confounded with each 

other.    In the above latin square the symbols   0,1,2   correspond to the levels of 

the third factor, c.   Now if we set up a second latin square in which the symbols, 
2 

say    a,|3,-y ,   correspond to the levels of  AB  ,   the resulting square will be 
2 

orthogonal to the first one.    The square corresponding to levels of   (AB  ),   ,,.        , - 1S 

i+2j,mod 3 

000 + 111 + 222 = a 

021 + 210 + 102 = ß 

201 + 012 + 120 =  Y 

a V P 
P a V 

\ P a 
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-1 3 
The class of fractional replicates constituted as an   n      fraction of  an   n 

factorial becomes an important one to study as it relates to construction of mutu- 
-3 9 ally orthogonal latin squares.    In particular, all   2       fractions of a   2     and all 

-2 6 
3       fractions of a   3     with all possible aliasing structures could produce several 

sets of mutually orthogonal latin squares.    This could have interesting conse- 

quences in finite geometry. 

The structure of the left-hand set of parameters in an aliasing structure 

will have a pattern; for example, for  n = 4, 5, and 7, the patterns are: 

n = 4 n = 5 
M + ABC M + ABC M + ABC 

A A A 

B B B 

C C C 

AB2 AB2 AB2 

AB3 AB3 AB3 

AB4 AB4 

AB5 

AB6 

Note that although  ABC  was completely confounded with the mean, any one of 
u  v 

the other three-factor interaction components   AB C ,   u,v = l,2,...,n-l  could 

have been utilized equally well.   Also, note that the levels of   C   corresponding 

to symbols produce a latin square ,    and that the levels of effects below the 

factor  B  produce a set of  n-1  mutually orthogonal latin squares. 
-1 3 

In general we want to look at all possible  n      fractions of an   n     factorial, 
,3> 

i.e., the subset of I   2 j   combinations for which the levels of   C  are the symbols 

in a latin square and to study their patterns especially for  n = 7,8, and 9.   All 

possible fractions, or rather all forms of the aliasing structure, could be classi- 

fied into all types of  t  mutually orthogonal latin squares,   0(n,t)   for   t= 1,2, 

... ,n-l .   Perhaps this is the manner in which the geometries of various values 
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of   n   can be exhaustively studied.   In fractional factorial notation we want to 

study all possible aliasing patterns for one latin square, for two latin squares, 

etc. as givrn by: 

B /+W^r   B    +w ßo' etc- 

2 
where J3     is the   n   + n-2   vector containing the interaction effect parameters, 

2 
W  is the   4 X (n   + n - 2)   matrix of aliasing coefficients,   X  is one of the 

two factor   interaction effects in J3^   corresponding to a column of zero co- 
* * 

efficients in  W,    and  ß_    and  W    correspond to ß.    and  W with the param- 

eter  X  deleted.    For   n = 3,   ß.^ = (AB, AB2, AC, AC2, BC, BC2, ABC, ABC2 , 

AB2C, AB2C2)  and  W  is equal to 

000000 1000 

0000100001 

0010000010 

1000000100 I 
2 

Since there are three columns containing all zeros   X  could be either  AB   , 

2 2 2 * AC , or BC   .   Selecting   X  as   AB ,   say, there would be no columns in  W 

which contain all zeros.   Thus, to obtain an  0(n, 2)   set from a given  0(n, 1) , 

set, at least one column in  W   should be all zeros.   Likewise, to obtain an 

0(n, 3)   set from a given  0(n, 2) set, at least one column in  W  should contain 

all zeros. 
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We now wish to illustrate the use of fractional replication procedures to 

construct latin squares which are mateless and which have orthogonal mates. 

To illustrate let us consider the four standard latin squares of order 4 which are 

(Fisher and Yates [1957] ): 

0 1 2 3 0 1 9 3 0 I 2 3 0 1 2 3 

] 2 3 0 1 3 0 2 1 0 3 2 1 0 3 2 

2 3 0 1 2 0 3 I 2 3 1 0 2 3 0 1 

3 0 1 2 3 2 1 0 3 2 0 1 3 2 I 0 

Square I Square II Square III Square IV 

It is known (Hedayat [1969] ) that the first three squares are mateless (There is 

no transversal through 000.) and that the last square belongs to an  0(4, 3) set. 

Now number the rows as   0,1, 2, 3   and denote these as levels of the factor 

a;  number the columns as  0,1, 2, 3, and denote these as levels of factor b, 

and the symbols in the latin squares by  0,1,2,3, the levels of the factor  c   . 

Then, in factorial notation the above  16  combinations form a one-fourth fraction 

3 
of a  4    factorial treatment design.   The aliasing scheme for the fractional 

replicate given as square IV is 

M + ABC 

A   + BC + AB2C2 +AB3C3 

B   + AC + AB2C   +AB3C 

C   +AB +ABC2    +ABC3 

where   u. = 1,   2   means   u ,   and   3   means   u    from   GF(4) and where the 

effects connected with a plus sign are completely confounded with each other. 

The completion of the remaining two aliasing structures results in the complete 

-1 3 
aliasing structures for this 4    fraction of the   4    factorial; these two are: 
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2 3 2 3   2 
AB   + AC    + BC    + AB  C 

AB    + AC    + BC    4 AB  C 

2 3 
If we use the levels of  AB     and of  AB     to form two latin squares, these two 

with square IV form an     0(4,3) set of mutually orthogonal latin squares. 

Now, let us return to the set of four standard squares given above and 

we note that only four combinations in square IV are replaced to obtain squares 

I, II, and III.    These are: 

additional combinations combinations replaced in IV 

Square     I 112,   130,  310,  332 110,  132,  312,  330 

II 113,   120, 210,  223 110,   123, 213,  220 

III 213, 230,  320,  331 220, 231,  321,  330 

The aliasing structure (without the coefficient^ is given on the following page for 

all four standard latin squares of order 4.    The 1/4 replicate given by square IV 

forms a regular fraction.   The remaining three fractional replicates are such that 

none of the additional effects are unconfounded with the effects    M, A, B, or C of 

the original latin squares of order 4.   Since this is true no linear combination 

of these effects will be unconfounded.    In order to form a latin square which is 

orthogonal to the given one it is necessary that there be a set of effects which 

is unconfounded with the effects in the given square.   This is impossible for the 

three squares I, II, and III and hence the squares are mateless, as is well-known. 

It would be interesting to ascertain the aliasing structures for the six 

standard latin squares of order 5 belonging to the 0(5,4) set and for the fifty 

standard latin squares of order 5 for which are known to be mateless (Hedayat 
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Aliasing structure of effects in the four 1/4 fractional replicates 
3 

of a   4     factorial for four standard latin squares of order 4 

Square I Square II Square III Square IV 

Effect Effect Effect Effect 
m w w t» 

Effect 

CO 

2 II 

in 
8 II 1 » 

^2 
S II 

—i  OQ 

8 II le
tt

er
 

= 
C

 1» 
e II 

0 
Ü   II 

So 
-2 « E II 

& < 
2 1- 

in 
8 .1 

M - - - - 

A 

a 
c 

- - - - 

- - - — 

AB p P P C 

AB2 p P P 

AB3 p P P 

AC p p P C 

AC2 p p P 

AC3 p p P 

BC p P p c 
BC2 p P p 

BC3 p P p 

ABC P p p p P P p P p P P C 

ABC2 P p p p P P p P p p P P c 
ABC3 P p p p P P p P p p P P c 
AB2C P p p p P P p P p p P P C 

ABV P p p p P P p P p p P P c 
ABV P p p p P p P p P P 

AB3C P p p p P P p P p p P P C 

AflV p p p P p P p P P 

AB Q P p p p P P p P p p P P C 

XJ 

N
o.

 o
f 

ef
fe

cc
s 

^o
nf

ou
n 

w
it

h 8 12 12 12 7 12 12 12 6 12 12 12 1 3 3 3 

means identical effect C  m eans complete confounding 
P     mec 3ns F )artia 1 cor ifoun ding blai ik m eans uncc nfou ndea 
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AB2 + AC3 + BC2 + AB3C2 

3 ?. 3 2   3 
AB    + AC " + BC   + AB C 

2 3 
If we use the levels of  AB     and of  AB     to form two latin squares, these two 

with square IV form an     0(4,3) set of mutually orthogonal latin squares. 

Now, let us return to the set of four standard squares given above and 

we note that only four combinations in square IV are replaced to obtain squares 

I, II, and III.    These are: 

additional combinations combinations replaced in IV 

Square    I 112,   130,  310,  332 110,   132,   312,  330 

II 113,  120,  2J0, 223 110,   123, 213,  220 

III 213, 230,  320,  331 220, 231, 321, 330 

The aliasing structure (without the coefficient^ is given on the following page for 

all four stanaard latin squares of order 4.   The 1/4 replicate given by square IV 

forms a regular fraction.   The remaining three fractional replicates are such that 

none of the additional effects are unconfounded with the effects   M, A, B, or C of 

the original latin squares of order 4.   Since this is true no linear combination 

of these effects will be unconfounded.    In order to form a latin square which is 

orthogonal to the given one it is necessary that there be a set of effects which 

is unconfounded with the effects in the given square.   This is impossible for the 

three squares I, II, and III and hence the squares are mateless, as is well-known. 

It would be interesting to ascertain the aliasing structures for the six 

standard latin squares of order 5 belonging to the 0(5,4) set and for the fifty 

standard latin squares of order 5 for which are known to be mateless (Hedayat 
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Aliasing structure of effects in the four l/4 fractional replicates 

of a   4 factorial for four standard lati n squares of order 4 

Square I Square II Square III Square IV 

Effect Effect Effect Effect 
w w tn 83 

Effect 
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- - - - 

AB p P P C 

AB2 p P P 

AB3 p P P 

AC P p p C 

AC2 P p p 

AC3 P p p 

BC p p p c 
BC2 p p p 

BC3 p p p 

ABC P p P p P p p P p p P C 

ABC2 P p P p P p p P P p p P c 
ABC3 P p P p P p p P p p p P c 
AB2C P p P p P p p P P p p P C 

AB2C2 P p P p P p p P p p p P C 

AB
2
C

3 
P p P p p p P p p P 

AB3C P p P p P p p P p p p P C 
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#•1030 -23- 



[1969] ).   After a study of these fractions, one should continue such a study for 

6—2 n = 7, 8, and 9.    It is suggested that one consider a   2    "'   fraction instead of a 

3-1 9-3 3-1 
4        traction for   n = 4  and a   2 fraction instead of an   8        fraction for 

n = 8 .    The reason for this is that there is much more theory available for 

s = 2   in the   sm   series than for any other value of   s .   Also, one may use the 

generalized defining contrast which has been developed by Raktoe and Federer 

[1969]  to a considerable advantage in writing out aliasing structures in these 

cases.    Investigation of the regular and irregular fractional replicates obtainable 

for various values of  n   could lead to considerable advances in the theory of 

mutually orthogonal latin squares. 

-24- #1030 



IV.   ANOVA Construction of  0(n. t) Sets 

There should be some procedure which would utilize the orthogonality of 

single degree of freedom contrasts in the analysis of variance   (AMOVA) and 

which could be utilized to construct orthogonal latin squares.    For example, one 

could make use of orthogonal polynomial coefficients for row and column con- 

trasts and then construct mutually orthogonal latin squares from these.   To illus- 

trate, consider the latin square of order 4 used previously wherein the row-column 

4 
intersections are numbered as a   2     factorial, i.e. : 

Column 
Row 1 2 3 4 

1 0000 0001 0010 0011 

2 0100 0101 OHO 0111 

3 1000 1001 1010 1011 

4 1100 1101 1110 mi 

The relation between the   16  contrasts using orthogonal polynomial coefficients 

4 
and the   2     factorial is given below,   where   RL, R^,   and   R     are linear, 

quadratic, and cubic polynomial contrasts among rows and   C ,  CQ, and   C 

are linear, quadratic, and cubic polynomial contrasts among the columns: 
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Source of variation 

C. F. M. 

df 

1 

Row contrasts 

A = -RT - 2R_ 

B=-ZRL + RC 

AB = R^ 

1 1 Row s linear = R   = A + 23 
Li 

1 
1 

■I quadratic = R- = AS 

J 1 n cubic = R    = 2A - B 

Column contrasts 

C=-CL-2CC 

D = -2CL + Cc 

CD = C^ 

u 
Roman numbers = (AB   ) 

r 
1   Columns linear = CT = C + 2D 

L 

>     { quadratic = CQ = CD 

cubic = Cc = 2C-D 

AC = RLCL + 4RCCC 

BD = 4RLCL + RCCC 

ABCD = RQCQ 

Greek letters = (AB    ) 

ABD = -2RQCL + R0CC 

BC = 2RLCL - 2RCCC+ 

4RLCC-RCCL 

ACD=  (-RL-2RC)CQ 

Latin letters = (AB    ) 

AD = 2RLCL-2RCCC-RLCC+ 

4RCCL 
ABC=RQ(-CL-2CC) 

BCD . (-2RL + Rc)CQ 

Total 

-26- 

I 

3i 

. . 

3' 

16 

RLCL 

Rccc 

RLCQ 

RQCC 

RCCL 

\CC 
R0CL 

Rcco 
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The individual degree of freedom contrast matrix for the above 16 

combination is.» 

i—H 

"H + fO + i fO + i O ro ro rO + i ro i + 
F-< 1 1 

o 
r-^ + m + r + l ro ro ro O + 1 ro 1 + ro 
i-H 1 1 

a, o 
*-* + f*t + i 1 I ro ro ro O^ 1 1 ro + + ro 
r-H 1 1 1 1 1 

o 
o + ro + i 00 + + CT- ro ro ro + + fO i 1 
t-H 1 1 1 

-H 
^-4 

o + + rr) ro + 1 ro + 1 rO 1 •+■ O ro ro 
r-^ 1 1 

o 
o H- + ro + I ro + 1 ro 1 + ro rO ro ON 
t—1 1 f 

—H 

o o + + ro r I ro 1 1 ro + + ro ro ro ON 
f-H 1 1 1 1 1 

o o o + + fO P0 + + ro + + ro 1 1 CT- ro ro 
F-4 1 1 1 

»—t 

(HI + 1 ro ro + 1 ro 1 + ro 1 + ON ro ro 

s o ' 1 1 1 1 

1 
(0 

o 
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Source of variation 

C.F. M. 

Row contrasts 

A = -RT - 2R 

B = -2RT +R^ 

AB = R^ 

df 

1 

3 

1 1 Rows linear = R   = A + 2B 
L 

■ (      1 "     quadratic = R_ = AB 

!> 1 1 "      cubic = R^ = 2A - B 

Column contrasts 

C=-CL-2CC 

D = -2CL 4 Cc 

CD = C. 

1   Columns linear = C   = C + 2D 
Li 

"        quadratic = CQ = CD 

cubic = Cc = 2C-D 

1 
Roman numbers = (AB   ) 3 

AC = RLCL + 4RCCC 

BD = 4RLCL + RCCC 

ABCD = RQCQ 

U2 
Greek letters = (AB    ) 

ABD = -2R0CL + RQCC 

BC - 2RLCL - 2RCCC+ 

4RLCC-RCCL 

ACD=(-RL-2RC)CQ 

Latin letters = (AB    ) 

AD - 2RLCL-2RCCC-RLCC+ 

4RCCL 
ABC=R0(-CL-2CC) 

BCD = (-2RL + RC,CQ 

Total 

-26- 

r, o 

1 

16 

RI.CL 

RCCC 

Roco 

RLCQ 

%C0 

RCCl 

RLCC 

RCCQ 
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The Individual degree of freedom contrast matrix for the above 16 

combination is: 

r—t 
^1 

+ ro + i ro + 1 a^ ro (•O ro + i ro 1 + 
«■( i 1 

o 
»-H 

<—I + (*» + i + 1 ro ro ro o^ + i ro 1 + ro 
(-H 1 1 

m, 

o + rO + i 1 1 ro ro ro a^ 1 i ro + + ro 
F-H 1 1 1 I 1 

o 
o + ro + i rO + -f O^ ro ro ro + + ro 1 1 
^H 1 1 1 

i-H 

p^ 

o + + ro ro + 1 ro + 1 ro i + a- ro ro 
F-H 1 1 

o 
•-H 

o + + ro + 1 ro + ! ro 1 + ro rO ro a- 
i«-4 1 1 

mi 
O o + + ro 1 1 ro 1 1 ro + + ro ro ro a^ 
»-< 1 1 1 1 i 

o o o + + ro CO + + rO + + ro i 1 O rO ro 
^H 1 1 1 
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mt + 1 ro CO + 1 ro 1 + ro r + O ro ro 
O 1 1 1 1 1 

i 
.2 o 
a <—1 

(0 *-^ + 1 ro + 1 ro 1 + ro 1 + ro ro ro O 
c o 1 1 1 1 1 
•H 
S 
E 
S 

o 
i-H 

o 
+ 1 ro 

1 
1 ' ro 

1 
+ + fO + + ro ro ro (^ 

o 
o + 1 ro ro + + ro 1 1 ro i 1 a- ro ro 
o 1 1 1 1 

^H 
IM( 

o + PO + + ro + 1 O ro ro ro + 1 ro + 1 
o 1 1 r 

o 
o + PO + + + 1 ro ro ro O + i ro + 1 ro 
o 1 1 1 

(-H 

o o + m + + 1 1 ro ro ro O 1 i ro 1 , ro 
o i 1 1 1 

o o o + fO + + ro + + o> rO ro ro + + ro + + 
o 1 1 r 1 1 ( 

<M 
CO 

s 
c 
5 

S ,-1 a Ü hJ rP Ü -1 a Ü 
(0 

rP Ü 
Ü ü Ü Ü Ü Ü Ü ü Ü 

5 ^H a o 
Ü 

hJ p-i hJ a a a Ü ü 0 
1 es a QJ o Ü « a; ca aT or er Qi a a; 

rd 
u 
0 
Ü 
.0 

CU 
x: 
+-> 
i_ 
o 

u 
S* 
to 
e 

■(-> 

& f 
0 
Ü 

6 
| 
a; 
ft 

<u 
ll 
D) 
0) 

XJ 
0) 

—H 

C 
■-H 
W 

cn 
ß 
n 
c 
o 
a w 
ru 
IM 

o 
Ü 

0) 
-C 
H 

#1030 -27- 



The corresponding single degree of freedom contrast matrix for the   2 
factorial is: 

-28- 

+ + + + + + + + + + + + + + + + 

o 
+ + + + +I l+l 1 l + l + l 1 

o + + + +I + I l + l + l 1 l + l 

O o + + + +I l + l l + l l + l 1 + 

o + +I I+ + + +I 1 1 l+l + l 

o 
o + +I l + l I+ + + +I 1 1 1 + 

o o + +I 1 l + l 1 I + I + I+ + + 

o o o + +I 1 1 I + I + I+++ + I 1 j 

c 
.2 
ffl 

o + I+I+ + +I + I++I 1 1 + 

c 

E 
8 

o 

o + 1+1 + 1 1 1 I+I++I + I 1 

o 
o + 1+1 I + I+ + + +I++I 1 

o o 
o +1+111++11111+++! 

o o + 1  I+ + + +I  l + l  I  l + l  |  i 

o 
o o + 1 I++I 1 l + l + l + + + + 

o o o + ll + l + l+lll+-tll + 

o o o o + II + II+ + + + + +II + I 

+-• 
03 
(0 tu 

■M 
c 
0 
Ü 
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The particular contrast matrix utilized is not unique,  as has been 

demonstrated above.   All orthogonal contrast matrices resulting in latin squares 

could be considered.   For example, other sets of contrasts among rows (or columns) 

could be: 

I 2 3 4 

Mean + + + + 

Ri 
- + 0 0 

R
?, 

0 0 - + 

R3 
+ + - - 

1 2 3 4 

Mean + + + + 

Ri 
- + 0 0 

or   R2 + 4 -2 0 

R3 
+ + + -3 

The interaction of row and column contrasts possibly could be utilized to allocate 

the symbols in the latin square. 

We wish to illustrate the method of constructing latin squares using 

orthogonal polynomial coefficients.   We shall first consider the construction of 

three mutually orthogonal latin squares of order 4 and then we shall consider the 

construction of a single latin square of order 6.    In the preceding table on 

orthogonal polynomials for  n = 4  denote all combinations with a plus sign as 

belonging to   (R C ).   and those with a minus sign as belonging to   (R C )     . 

Do likewise for the   R^C-   and   R~,C     effects.   Then, the four latin square 

symbols are obtained as follows: 

(\CL)1, (RQCQ^, (RCCC)1 = oooo + oioi + loio + mi = A 

(IWr ^QVO' "WO' 
0001 + 0100 + 10" +1"0 = B 

(R
L

C
IV ^QVO' ''Wr 0010 + 01114 1000 +1101 = c 

(R
LClV (RQCQV (RCCC)0= 0011 + 0110 + 1001 + 1100 = D 
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This results in the following latin square of order 4 

A B C D 

B A D C 

C D A B 

D C B A 

Likewise, if we use the following polynomial contrasts we obtain the two mutually 

orthogonal mates of the above square: 

^j/Vl» ^C^cV ®QÖlk ~ 0001 + 0110 + 1000 + 1111 s a 

(R
L
C

QV ^
Q

OV   
(iG0L^ = 0010 + 0101 + 1011 + 1100 = ß 

(RLCQ)0, (RQCC)0, (RQC^J = 0011 + 0100 + 1010 + 1101 = Y 

(•Wo' ^Q^V   ^CÄA) = 0111 + 1001 + 1110 + 0000 = 6 

and 

^iPch*   {*QQlh*  ^O^^l * 0011 + 0101 + 1000 + i1!0 = I 
(RL0oV  ^Q^O'  ^O^^ " 0001 + 0111 + 1010 + 1100 = II 

^l/Vo'   ^Q^O' ^O^^l * 0000 + 0110 + 1011 + 1101 = II1 

^^c^' (R
Q

C
LV   ^CWO 

= 0010 + 0100 + 1001 + 1111 = IV 

The above results in the following two latin squares of order 4 

6 a ß Y III II IV I 

Y ß a 6 IV I III II 

a 6 y ß I IV II III 

ß V 6 a II III I IV 

The above method of constructing mutually orthogonal latin squares using 

polynomial coefficients works for latin squares of order  n  where   n = 2P .   We 

need another procedure for other values of  n  and shall now construct a latin 

square of order 6 from the orthogonal polynomial coefficients in the table of 

single degree of freedom contrasts for   36   combinations.   If we observe only 

the signs of contrasts we note that the   36   combinations may be classified into 
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six sets of four with like signs and two additional sets of six.   The latter two 

sets will be used to build up the six sets of four into six sets of six as follows 

where all combinations with a plus sign go in the one level and all those with a 

minus sign go in the zero level (see page 32): 

(^aj^C^, (R4C4)0, (R5C5)0 + 2from (ijC^, (R^)^^, (l^C^, (R^ 

(R
2
C

2V 'Wo' <Wi Wo+ 

'Wo' (R3C3V   (R4C4)0' iRsVi + 2 fr0m WO' (R2C2V (R3C3)0' (R4C4V^Si 
^0a)®' (R3C3V iR4C4h'  1

WQ* 
(R2C2)lf   (R3C3)0, (R4C4)0, (R5C5)1 4 

From these sets we obtain 

(12 f 21 + 34 + 43) + (00 + 55) = A 

(02 + 20+ 35 + 53) + (11 + 44) = B 

(01 + 10 +45 +54) + (22 + 33) = C 

(04 + 15 +40 + 51) + (23 + 32) = D 

(03 + 25 +30 + 52) + (14 + 41) = E 

(13 + 24 +31 + 42) + (05 + 50) = F 

This results in the following latin square of order 6: 

00 A 10 C 20 B 30 E 40 D 50 F 

01 C 11 B 21 A 31 F 41 E 51 D 

02 B 12 A 22 C 32 D 42 F 52 E 

03 E 13 F 23 D 33 C 43 A 53 B 

04 D 14 E 24 F 34 A 44 B 54 C 

05 F 15 D 25 E 35 B 45 C 55 A 

The pair of treatments in the second set of parentheses, e.g.   (00 + 55), was 

picked from the set of six in such a manner as to have  i  and  j   in the combina- 

tion  ij,   contain   0, 1, 2, 3, 4, and 5   since each letter must appear once in 

each row and once in each column. 

It would be interesting and perhaps enlightening to carry out the above 

procedure for  n = 10 and 12  and to exhaustively study the complete set of   35 

contrasts for n = 6 . 
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V.   Group Construction of 0(11, t) Sets 

V. 0.   Introduction 

The construction of  0(n,t)   sets based on groups and their 

associated mappings such as automorphism, complete mapping, and orthomorphism 

is the oldest and still the most popular method for  n  not of the form   4t + 2 . 

Euler [1782] implicitly utilized some properties of finite groups of order   2t + 1 

and   4t   for his construction of  0(2t + l,2)  and  0(4t,2)   sets, respectively.    It 

was MacNeish [1922]  who, for the first time, explicitly (however, not rigorously) 

utilized group properties for his construction of  0(q   , q   -1)   sets and   0(n, \ ) 
I.   t i l      2 r sets, where  q   is a prime,   m   is a positive integer and if  n = q     q      ... q 

i,      i2    l        lr        r 

is the prime power decomposition of  n   then   \  = min(q    , q       ... , q    )-1 .   The 
i        £ r 

field construction of  0(q   ,q   -1)   sets found independently by   Bose [1938] 

and Stevens [1939]   is based on the additive group of   GF(q   )  and its related 
■4 

cyclic group of automorphisms.   The  0(n,n-l)   sets for  n= 3,4,5,7,8 and   9 

exhibited by Fisher and Yates [1957]  are based on cyclic group and abelian groups. 

Several beautiful applications of group theory to the existence and non-existence 

of  0(n,t) sets have been found by Mann [1942, 1943, 1944] .   The  0(12,5)   sets 

found by Johnson jllal.  [1961] and Bose et al.  [I960]  are based on abelian 

groups of order 12.   Hedayat [1969]  and Hedayat and Federer [1969]  have found 

a series of results on the existence and non-existence of  0(n,t)   sets through the 

group theory approach.   The reader interested in this subject will find the fol- 

lowing references together with the references given to these papers very useful: 

Paige [1951], Hall-Paige [1955], Singer [1960], Brück [1951], and Sade [1958]. 
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The author has no doubt that the reader can find many more Interesting papers 

directly or indirectly related to this rich subject. 

V. 1.    Definitions and Notations 

There are several forms of definitions of latin squares and orthogonal 

latin squares.   The following forms are useful for the results which will follow: 

Definition V. 1.1.     A latin square of order  n  on an  n-set   ^ is an  n x n  matrix 

whose rows and columns are each a permutation of the set  2*   Every latin square 

of order  n  may therefore be identified with a set of  n  permutations (p , p ,..., p ) 

where  p    is the permutation associated with the  ith  row. 

Definition V. 1. 2 .   Let   L.   be a latin square of order  n  on an  n-set   K » 

i = l,2,...,t   .   Then, the set   S = {L., L-, ... , L }  is said to be a mutually 

orthogonal set of  t   latin squares if the projection of the superimposed form of 

the  t  latin squares on any two  n-sets   £.   and  £.,   * * J>   forms a permutation 

of the cartesian product set of  ^   an^  Z<   •   Such a set is denoted as an 

0(n,t)   set. (See also definitions 1.2 and 1.3-) 

Definition V. 1. 3.    If   L = (P^ P12, ... , f^J  and   L2 = (P21, P22, ... , P2n) 

are two latin squares of order  n  on an  n-set   Jj,   then we may define   L.L-   to 

be   L   = (P11P21, ^z^'**• ' Pl P2 Hsee definition V.l. 1).   The generalization 

to the product of  t > 2   latin squares follows immediately. 

V. 2 .        Construction of  O(n.t)   Sets Based on a Group 

We shall divide the problem into three parts based on whether  n   is a 

prime, or a mixture of prime powers.   The proof of the subsequent results can be 

found in the references related to this section. 
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V. 2.1.   n = q a prime.   Recall that any prime ordered group is cyclic. 

Theorem V. 2.1.1.    Let   G = {P,, P ,... , P } be a cyclic permutation group of de- 

gree   q   and order  q .    Then.   S    = {L , L2, ... , L      }  is an   0(q, q-1)   set. 

where   ^ = (P^ ^ " ' f ^   ' 

Demonstration V. 2.1.1.    Let  q = 5 .   Select any arbitrary generator such as 

(-c-.J  which generates a cyclic permutation group   G  and, hence, a latin 

square   L, .   Then, 

V 

3 5 2 1 4 

■ h- 

2 4 5 3 1 

- V 

5 1 T T 3 

. V 

"4 3 1 T 2 

2 4 5 3 1 4 3 1 5 2 3 5 2 1 4 5 1 4 2 3 

5 1 4 2 3 3 5 2 I 4 4 3 1 5 2 2 4 5 3 1 

4 3 I 5 2 5 1 4 2 3 2 4 5 3 1 3 5 2 1 4 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

For those who do not like to work with permutation groups we present the following 

theorem: 

Theorem V. 2.1. 2.    ist  L(r)  be an  n X n   square with  ri + j (mod q)   in its   (i,j)th 

cell,   i,j = 0,1,...,q-1.   Then.   S12 = {L(l), L(2). ..., L(q-l)}  is an   0(q, q-l) 

set if q  is a prime. 

Demonstration V. 2.1. 2.     Let  q = 5;   then, 

Ld)« 

0 1 2 3 4 

,L(2) = 

0 1 2 3 T 

,  L(3) = 

0 1 7 3 T 

,L(4) = 

0 1 2 3 4 

1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3 

2 3 4 0 1 4 0 I 2 3 1 2 3 4 0 3 4 0 1 2 

3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 T 
4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0 
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Note that   L( 1)   in theorem V. 2.1. 2 is based on the cyclic permutation 

group generated by   (123*80o    ^   and   L(i) = L (1),   i = 2, 3,... ,q-l .   Hence 

theorem V. 2.1. 2 is a special case of theorem V. 2.1.1 . 

V. 2. 2.   n = q     where  q   is a prime and   m  any positive Integer.   Note that 

this case in particular for   m = 1 includes case 1.   We shall present three 

theorems for this case.   The first two are based on cyclic groups and the third 

one is based on any group which admits an automorphism of order  t   . 

Theorem V. 2. 2.1.      Let  G = {P., P,, ..., P } be a cyclic permutation group of 

degree   n   and order  n   .   Then,   S . = {L,,L ,... , L   }  is an   0(n,\)   set 

where   n = q    ,\ = q-l, and   L   = (P. , P^, • • •, P1)   • 

2 
Demonstration V. 2. 2.1.     Let  n = 3    = 9 .   Select any arbitrary generator such 

as   U 4 5 I 6 7 a Q 2^  w^ic^ generates a cyclic permutation group   G  and hence, 

a latin square   L .   Then, since   X.  = 2, 

Li = 

3 4 5 1 6 7 8 9 2 

5 1 6 3 7 8 ) 2 4 

6 3 7 5 8 9 2 4 1 

7 5 8 6 9 2 4 1 3 

8 6 9 7 2 4 1 3 5 

9 7 2 8 4 1 3 5 6 

2 8 4 9 1 3 5 6 7 

4 9 1 2 3 5 6 7 8 

1 2 3 4 5 6 7 8 9 

and    L2 = 

5 1 6 3 7 8 9 2 4 

7 5 8 6 9 2 4 1 3 

9 7 2 8 4 1 3 5 6 

4 9 I 2 3 5 6 7 8 

3 4 5 1 6 7 8 9 2 

6 3 7 5 8 9 2 4 1 

8 6 9 7 2 4 1 3 5 

2 8 4 9 1 3 5 6 7 

I 2 3 4 5 6 7 8 9 

is an   0(9,2)   set. 

Conjecture.   The set  S is orthogonally locked, meaning that there does not 

* ii   r   *i exist a latin square   L such that   S-. U (L } is an   0(n,\ +1)   set . 
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Note that for  n   even this conjecture is correct since any latin square 

of even order based on cyclic permutation group is orthogonally mateless. 

An analogous theorem to theorem V. 2.1. 2 for this case is: 

Theorem V. 2. 2. 2.     Let   L(r)   be an   n X n   square with   ri + j (mod n)   in its 

(i,j)   cell,    i = 0,1,2,... ,n-l .    Then   S      =  {L(l),  L(2), ... ,  L(\)}   is an 
22 

m 
0(n,\)   set if   n = q      and   \  = q-1 . 

Demonstration V. 2. 2. 2.    Let  n = q =  3     then, 

1 

L(l) 

0 1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 0 

2 3 4 5 6 7 8 0 1 

3 4 5 6 7 8 0 1 2 

4 5 6 7 8 0 1 2 3 

5 6 7 8 0 1 2 3 4 

6 7 8 0 1 2 3 4 5 

7 8 0 1 2 3 4 5 6 

8 0 1 2 3 4 5 6 7 

and    L(2) = 

0 1 2 3 4 5 6 7 8 

2 3 4 5 6 7 8 0 1 

4 5 6 7 8 0 1 2 3 

6 7 8 0 1 2 3 4 5 

8 0 1 2 3 4 5 6 7 

1 2 3 4 5 6 7 8 0 

3 4 5 6 7 8 0 1 2 

5 6 7 8 0 1 2 3 4 

7 8 0 1 2 3 4 5 6 

is an   0(9, 2)   set.    Note that theorem V. 2. 2, 2 is a special case of theorem V. 2. 2.1 

viz. ,   L(l) is based on the cyclic permutation group generated by   (     ?   ? *''     n  ^ 

and   L(i) = L (1),   i = 2,... ,\   . 

Theorem V. 2. 2. 3.     Let   G = {a   = e   the identity,   a   , ... , a  }  be a group of 

order  n  and a  an automorphism on  G   such that  a (a ) # a ,   lli£t   , 

a. # e   . 

1)     S = {L1, L2,    . . , Lt}   is an   0(n, t)   se^ where 
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e a2 
an 

^2) öl<a2)a2 ai(a2)an 

L,  = 
i 

^(a3) al(a3)a2 
ai(a3)an 

• 
• 
• 

• 
• 
• 

• 
• 
• 

&%   ) n 
a1(an)a2 

i,    v 
a     a«)an n   n 

1     ~"     ly^yavayt c 

2)      If in particular  t = n-1,   then one can simplify the construction of an 

0(n, n-1)   set from the following key latin square by a cyclic permutation of its 

last    n-1  rows. 

e a(X) ö2(X) a   •   • ^(x) 

«(H) a(x)Q'(x) a(x)Q  (x) t • • a(x)a (x) 

a2(x) a   (x)a(x) a  (x)a  (x) • • • 
2,   4 t,   . 

a  {x)a (x) 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 

• 
• 
• 
• 

«V) a (x)ar(x) 
t       2 

a (x)a  (x) • • • a (x)a (x) 

for anv  x _ia G  except the identity element. 

We see, therefore, that by means of theorem V. 2. 2. 3 one can construct 

an   0(n,t)   set if we can find a group   G  and an automorphism   a  of order   t   . 

In particular, if  t = n-1   the whole task of construction reduces to the construc- 

tion of   L     as described above.    If   n = q     then because every elementary 
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abelian   q-group   G  of order   n   admits an automorphism   a   of order   n-1,   we 

can construct an   0(q   , q   -1)   set based on   G  and   a .    Here we present a 

general method of constructing such an automorphism for any   n = q     .In par- 

ticular, we shall exhibit such an automorphism for the following   n : 

n=2   ,   m = 2,3,...,9 

n=3   ,   m = 2,3,...>6 

n = 5   ,   m = 2, 3, 4 

n = 7   ,    m = 2, 3 

2        2        2        2 2 2 2 
n = 11  , 13  , 17  , 19   , 23   , 29   ,   and   31     . 

This will then perhaps be the largest table that has ever been produced so far 

for  0(n, n-1)   sets. 

Note that there is no loss of generality if we limit ourselves to the follow- 

ing elementary abelian q-group of order  n = q 

G    =  {(^ b2 . . .  b^),    b   =  0, 1, 2, ... , q-1, j = 1, 2, . . . , rn}   . 

The binary operation on   G    is addition   mod q   componentwise, viz..   (b  b   ... 

b   ) + (bl b'  ... b' ) = (c. c- ... c   )   where   c. = b, + bl (mod q) .    Note that 
m i   c m i   c m ill 

the elements of   G    are simply the treatment combinations of  m   factors each 

at q   levels.   The reason why we have chosen this particular elementary abelian 

q-group is that it has a well-known structure to those who are concerned with ex- 

periment design construction.   Note also that   G'   is the direct product of  m 

Galois fields, each of order  q . 

The generator set for every elementary abelian q-group of order  q     con- 

sists of   m   elements, and for uniformity, we may choose the following ordered 
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generator set for   G    . 

g =   ((100 ...  0),  (01,00 ...  0),  ...   (00 ... ,  010),  (00 ...  01)}   . 

Note that the structure of every automorphism   a   on   G     is completely 

defined if we know the image of each element of  g   under  a   .   G     is a vector 

space of dimension   m   over   GF(q). 

Before proceeding further we need the following well-known result: 

m 
Theorem V. 2. Z. 4.     Let   G   be an elementary abelian q-qroup of order  n = q 

Then. Automorphism group of   G   is isomorphic to the (multiplicative) group of all 

non-singular  m X m   matrices with entries in the field of integers   mod q . 

The construction of an automorphism of order   n-1   for  G     is equivalent 

n-1 t 
to the construction of an   m X m   matrix  A  such that   A       = I  but  A   ^ I   if  t 

is not a multiple of   n-1   over the field of integers   mod q   . 

We know from linear algebra that if   <() is a linear map on a vector space 

V  and if  x £ V  such that   x # 0   but   <)>(x) = x,   then   1  is an eigenvalue of   $. 

,  s       s 
Moreover, if   {\  , X.   , ... , \  }  is the set of eigenvalues of   <t>,   then  (X, , X. ;,, 

s s 
... , X.   ) is the set of eigenvalues of <|>  .   Therefore, for our problem we must 

find a linear map on   G     with a set of eigenvalues    x.     having the property that 

s n—1 
for each   i,   X. , # 1   (mod q)   for all   s = 1,2,... ,n-2   and   \.      =1.   To do so 

let   F   be a   GF(q   )   and let   ß   be a generator of the multiplicative cyclic group 

of   GF(qm),   i.e.    ß1 ^ 1,   i = 1,2,... ,n-2   while   ß11'1 = 1   .    Let   f(x)   be a 

monic irreducible polynomial over  GF(q)   for   ß .    Note that   f(x)   has degree   m 

ß   is sometimes called a primitive root or mark of   F .   Now, if we let  A  be the 

companion matrix for   ß,   then it is easy to see that  A has the desired property. 
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Example 

Let us findan automorphism of order 3 for G* = {(00), (01), 1101, (IIi}. 

It is sufficient, by previous arguments , to find a 2 X 2 rna trix A of order 3 

over the field of integer mod 2 • Let GF(2
2

) = {o, l, j}, j} +I} with the follow-

lng addition (+) and multiplication (·) tables 

+ 0 I , j3 + I 0 I j3 j3 + I 

0 0 I j3 j3 + I 0 0 0 0 0 

I I 0 j3+ I j3 I 0 I j3 fl+ I 

j3 i3 jHl 0 I j3 0 j3 j3 + I I 

j3+1 j3 +I j3 I 0 j3 + I 0 i3 + I I j3 
-- - -- l___t__._~ 

Note that j3 ls a primitive root for GF( 2
2

) and f(x) = x
2 

+ x + I ls a monic 

Irreducible polynomial for j3, since f(j3) = O(mod 2) • The companion matrix 

associated with f(x) Is 

A=[~ ~] . 
As a check 

2 [I I] [I I] 
3 

[I 2] [I ol A "' 
1 2 

"' 
1 0 

over GF(2), A "' 
0 
I "' 

0 
IJ 

over GF(2) • 

Let us now determme the image of the ordered generator set g = { (10), (01)} 

under A • 

ff!030 -41-

Ag = [ 
I] [(10)] = [0 (10) + I (OI)J = [(Ol)J 

I (01) I (10) + I (01) (11) ' 

Therefore, A(IO) = (01), A(Ol) "' (11), and since (11) = (10) + (01), (00) = 2(10) 

+ 2(01)., we have A(!!)= (10), A(OO) = (00). 

~l 

Now, we have a group G of order 4 and an automorphism of order 3 

on G''. We can now construct an 0(4,3) set. Since e = (00), and if we let 

x = (10) in theorem V. 2, 2, 3, we obtain: 

L = 
0 

(001 

A(IO) 

A
2

(10) 

A
3

(10) 

(00) 

(01) 

(II) 

(10) 

A(lO) 

A(IO) A(IO) 

A
2

(10)A(IO) 

A 
3 

(10 )A(IO) 
--

(01) 

(00) 

(10) 

(11) 

A
2

(10) A
3

(10) 

A(lO) l(lO) A(lO) A 
3 

(10) 

A
2

(10)A
2

(10) A
2

(10)A
3

(10) 

A
3

(IO)A
2

(10) A
3

(10)A
3

(10) 

(II) (10) 

(10) (11) 

(00) (01) 

(01) (00) 

The other two latin squares are obtained by a cyclic permutation of the last three 

rows of 1
0 

• Thus, 

L = I 

-42-

(00) 

(I 0) 

(01) 

(II) 

(01) 

(II) 

(00) 

(10) 

(II) (10) 

(01) (00) 

(10) (II) 

(00) (01) 
-

(00) (01) (II) (10) 

(II) (10) (00) (01) 

(10) (il) (01) 
L2 

(00) 

(01) (00) (10) (II) 
-

#1030 
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To simplify the notation we set   (00) = 1, (01) = 2,  (11) =  3,  (10) = 4   to obtain: 

L0 = 

1 2 3 4 

2 1 4 3 

3 4 1 2    j 

4 3 2 1    | 

,   L, = 

1 2 3 4 

4 3 2 1 

2 1 4 3 

3 4 1 2 

, and L, 

1 2 3 4 

3 4 1 2   ! 

4 3 2 1    1 

2 1 4 3    j 

m 
We are now ready to exhibit a generating matrix of order   n -1 = q    - 1 

with entries from   GF(q)   for those   n   promised before. 

n Generator Order Generator Order 

4 

DO 
0 1 0 o 1 
0 0 1 0 
0 0 0 1 
1 1 0 oj 

15 

0 1 0 0 0 0 
0 0 I 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
1 1 0 0 0 0 

0   I 0 0 0 0 0   0 
0   0 1 0 0 0 o o i 
0   0 0 1 0 0 0   0 
0   0 0 0 1 0 0   0 
0   0 0 0 0 1 0   0 
0   0 0 0 0 0 1   o 
0   0 0 0 0 0 0    1 
1 0 1 1 1 0 0 oj 

63 

255 

fo 1 0] 
b 0 1 
i 0 ij 

0    10   0 0 
0   0    10 0 
0   0    0    I 0 
0    0   0   0 1 
10    10 0 

0 10 0 0 0 0 
0 0 10 0 0 0 
0 0 0 10 0 0 
0 0 0 0 10 0 
0 0 0 0 0 10 

0    0   0   0   0 

31 

1   1 

127 

0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
1 1 1 1 1 0 0 0 1 

511 
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n Generator Order n Gen era tor Order 

3i 
To  f| 

33 
0   i   ol 

1 i  ij 8 0   0    1 26 
1   1   oj 

0    10   0 "o   1   0  0  0 

34 0   0    10 
0   0   0    1 
110   0 

80 35 0   0   I   0   0 
0   0   0    10 
0   0   0   0    1 

242 

»_            -i 
110   0   0 

OlOOOO 

36 

0   0    10   0   0 
0    0   0    10   0 
0   0   0   0    10 
0   0   0   0   0    1 

728 53 

0    1   0 
0   0    1 
2   2   0 

124 

1 10   0   0 0 

17 

23 

29 

DO 24 

0    10   0 
0   0    10 
0   0   0    1 624 
3   3   0   3 J 

To   1   0~1 
0   0    1 342 

L2   2   0J 
To  fl 
L5   5J 288 

To n 
L1 ii 528 

To   1 I 
840 

11 

13 

19 

27 

31 

DO 48 

120 

168 

fo   ll 
U 4J 360 

To  11 
[3 3J 728 

To 1 j 
[2   2j 960 

To shed more light on the given procedure we go through another example.   Let 

3 
n = 2     .   Then 
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a'" =   {(000),   (001),  (010),  (Oil),   (100),  (101),  (110),  (111)} 

g    =  {(100),  (010),  (001)}     and       A = 

Ag = 

0 1 0 
0 0 1 
1 0 1_ 

~0    1    0 (100) (010) 
0   0    1 (010) = (001) 
1    0    1 (001) (10l)j 

Let  x  in theorem V. 2. 2. 3 be   (100).    Then, 

A(100) = (010) 

A2(100)=  (001) 

3 
A (100)=  (101) 

A (100)=  (111) 

A (100)=  (110) 

A (100)=  (Oil)   ,   and 

A7(100)=  (100)   . 

Therefore, we obtain   L    as follows: 

Lo = 

(000) (010) (001) (101) (111) (HO) (011) (100) 

(010) (000) (OH) (111) (101) (100) (001) (110) 

(001) (011) (000) (100) (110) (111) (010) (101) 

(101) (111) (100) (000) (010) (011) (HO) (001) 

(111) (101) (110) (010) (000) (001) (100) (OH) 

(HO) (100) (111) (011) (001) (000) (101) (010) 

(011) (001) (010) (110) (100) (101) (000) (111) 

(100) (HO) (101) (OH) (OH) (010) (111) (000) 

Setting   (000) = 1,    (010) = 2,    (001) =  3,    (101) = 4,    (111) = 5,   (110) =  6    , 

(011) = ?,   (100) =8,   then   L    in a compact form will be: 
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Lo = 

1 2 3 4 5 6 7 8 

2 1 7 s 4 8 3 6 

3 7 1 8 6 5 2 4 

4 5 8 1 2 7 6 3 

5 4 6 2 1 3 8 7 

6 8 5 7 3 1 4 2 

7 3 2 6 8 4 1 5 

{   8 6 4 3 7 2 5 1 

Now, we can derive   L,, L?> ... , L,   from   L0   by a cyclic permutation of the 

last   7   rows of   Ln,   for example, 

Li = 

1 2 3 4 5 6 7 8 

'V 

1 2 3 4 5 6 7 8| 

8 6 4 3 7 2 5 1 7 3 2 6 8 4 1 5 

2 1 7 5 4 8 3 6 8 6 4 3 7 2 5 1 

3 7 1 8 6 5 2 4 2 1 7 5 4 8 3 6 

4 5 8 1 2 7 6 3 3 7 1 8 6 5 2 4 

5 4 6 2 1 3 8 7 4 5 8 1 2 7 6 3 

6 8 5 7 3 1 4 2 6 8 5 7 3 I 4 2 

7 3 2 6 8 4 1 5 6 8 5 — 3 1 4 2 

and so on.   Note the way   L,   is derived from   L   :   except for the first row of 

L.   and   L,,   which are identical, the   i      row of  L0   becomes the   (i + 1)      row 

of   L.,   and the last row of   Ln   becomes the second row of   L, .    In general   L, 

is derived from   L,  ,   in the same fashion as   L,   is derived from   L-   . 
j-1 1 0 

m.   m? m 
V. 2. 3.       n = q.    q?    ... q   r,   where   q,   is a prime such that   q. ^ q.   if   i ^ J 

i       fa r i i       j 

and   m.   is a positive integer,   i = 1,2,... ,r   . 
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m1     m2 m 
Theorem V. 2. 3.1.    Let   n = q.      q        ...   q       be the prime; power decomposition 

m1 

of  n   .    Then, there exists an   Oin,y)   set based on a group, where   v = min(q     , 
m_ m 

^2   » • • • > q
r   ' " ■l   • 

Construction.    Let   n. = q,      .   Then, by the method of theorem V. 2. 2. 3   construct 

an  0(n,, n, - 1)   set   S, = {L... L,_,..., L.      ,},   i = 1.2,. .. ,r   .    Now, let i'    1 1 il'   12' in-1 >   >       > > 

S1 = {Lil, Li2, ... , L   },   i=l, 2, ...,r.   Then, H = {A^ A2, ..., A. } is 

an   0(n, "Y)   set where   A. = L., ß) L    $... t^L . .   $ denotes the Kronecker product 
j        ij        ^J rj 

operation. 

2 
Demonstration V. 2. 3.1.    Let   n = 12 = 2    •  3 .    Then,   y= 2, 

S1 =     L11 

1 2 3 

2 3 1 

3 1 2 
'   L12 = 

1 2 3 

3 1 2 

2 3 1 

S2 = '21 

1 2 3 4 

2 1 4 3 

3 4 1 2 

4 3 2 I 

'    L22 

1 2 3 4 

4 3 2 1 

2 1 4 3 

3 4 1 2 

'    L23 

I 2 3 4 

3 4 1 2 

4 3 2 1 

2 1 4 3 

S.   = {L.p L.   } and   S     sa^    (L2], L    }  .   Then, the reader can easily 

verify that 

H= (A^ Lu$ L21,   A2 = L12® L22} 

is an  0(12, 2)   set. 

Remark.    Let   n   and v be the same as in theorem V. 2. 3.1.    Then it can be shown 

that automorphism method fails to produce more than  \ mutually orthogonal latin 
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squares.    Wo shortly show that this inherent defect is due to the mapping not 

to the group structure. 

Definition V. 1,1.    Consider for each positive Integer  n  an abstract group  G  of 

order   n   with binary operation   * ,   Let  n  be the collection of all one-to-one 

mappings of   G   into itself.   Then two maps   o-   and ijj  in  i2  are said to be 

orthogonal if for any  g   in   G . 

(<rZ)* MJZ)'
1
 = g 

has a unique solution   Z   in   G .    In particular if   a    is an identity map then   ty 

is said to be an orthomorphisrn map.   A t-subset of  JJ  is said to be a mutually 

orthogonal set if every two maps in this t-subset are orthogonal. 

Let   L(')  be an  n X n   square.   We make a one-to-one correspondence 

between the rows of   L^ )  and the elements of  G .   Thus, by row  x  we shall 

mean the row corresponding to the element  x   in   G .   Similarly we make a one- 

to-one correspondence between the columns of   LI* )   and the elements of  G . 

The cell of   L(«)   which occurs in the intersection of row  x  and column  y   is 

called the cell   (x,y) , 

Theorem V. 2. 3. 2.     Let   o- be in  n .   Put in the cell   (x,y)  of   L(')  the element 

(o-x) !!( y  of  G .   Call the resulting square   L(o-) .   Then   L((r)   is a latin square 

of order   n   on   G .    Moreover if {<T ,, d ~, ..., u )  is a set of  t   mutually ortho- 

gonal maps then   {L((r.),..., L(o-)}  is_an   G(n,t)   set. 

Demonstration V. Z. 3. 2.    Let   G = {0, 1, 2} with the binary operation  x. + x   = 

x  (mod 3), x,   in   G .   Then the maps   o-   and   ^  with the following definitions 

are orthogonal. 

-48- #1030 



o-(O) = 0 \\i{Q) = 0 

ff(l) =   I ^(1) = 2 

(r(2) = 2 i|j(2) = 1   . 

The corresponding latin squares to o-   and   ^ are; 

L((r)=     I    2    0    ,   L(4J)" 

fo 1 2| 

I 2 0 

2 0 ij 

0 1 2 

2 0 1 

1 2 0 

which are orthogonal. 

V. 3,    Construction of  0(n,t)   sets based on   t   different groups of order   n 

Up to now we have been concerned with the construction of   0(n,t)   sets 

using a group of order  n  which admits certain mappings.    In this section we want 

to show that for some   n's   and  t's   one can construct  0(n,t)   sets based on   t 

different groups each of order  n   ,   This approach proved useful because it lead 

to the construction of an   0(15, 3)   set.   We should mention that our motivation 

to search along these lines has stemmed from the following theorem, with a nega- 

tive flavor, proved by Mann [1944] . 

Theorem V. i. 1.    It is impossible to construct an   0(5,2)   set based on two dif- 

ferent permutation groups. 

For a while we thought that this theorem might be true for all other orders. 

However, it was found that, fortunately, this is not the case as the following two 

theorems show: 

Theorem V. 3. 2.     It is possible to construct   0(7,2)   sets based on two different 

cyclic permutation groups of order   7 . 
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Proof:       (Lj, L )   is an  0(7,2)   bet where 

V 

I I 3 4 5 6 7 

3 7 6 1 4 2 5 

6 5 I 3 1 7 4 

Z 4 7 6 3 5 1 

7 1 5 2 6 4 3 

5 3 4 7 2 1 6 

4 6 1 5 7 3 2 

L,= 

1 2 3 4 5 6 7 

2 3 4 5 6 7 1 

3 4 5 6 7 1 2 

4 5 6 7 1 2 3 

5 6 7 1 2 3 4 

6 7 1 2 3 4 5 

7 1 2 3 4 5 6 

L.   and   L2  are based on two different permutation groups as can easily be seen 

from the different structure of their rows.   To be specific   L.   is based on the 

cyclic permutation group generated by   U 7 z, i 4 ? 5^  an^   ^2   is ^ase^ on t'ie 

cyclic permutation group generated by   (2345671^*   Note t*iat» since   Li   and 

L,   are based on cyclic permutation groups, then by theorem V, 2.1.1   {L.} and 

{Lp}  can be embedded in   0(7,6)   sets.   However, whether or not   {L., L-} can 

be embedded in a larger set is an open problem. 

Theorem V. 3. 3.     It is possible to construct  0(15, 3)   sets based on three dif- 

ferent cyclic permutation groups of order 15. 

We remind the reader that every group of order  15   is cyclic. 

Proof;     (Lj, L , L3)   is an  0(15, 3)   set where 
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h- 

0 1 2 3 4 5 o 7 8 9 10 i 1 12 13 14 
2 3 4 5 6 7 8 9 10 11 12 ii 14 0 1 
4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 
6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 
8 9 10 11 12 13 14 0 1 T i 4 5 6 7 
10 11 12 13 14 0 i 2 3 4 5 6 7 8 9 
12 13 14 0 1 2 3 4 5 i) 7 8 9 10 11 
14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 0 
3 4 5 6 7 8 9 10 1] 12 li 14 0 1 2 
5 b 7 8 9 10 11 12 J3 14 0 1 2 3 4 
7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 
9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 

11 12 13 14 0 I 2 3 4 5 6 7 8 s 10 
13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 

generated by e 1 2 3 4 5 6 7  8  9 10 1 1 12 13 14 
3 4 5 6 7 8 9 10 11 12 1 3 14 0 1 ). 

h' 

0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 
I 11 10 7 9 14 13 6 0 3 4 2 8 5 12 

11 2 4 6 3 12 5 13 1 7 9 10 0 14 8 
2 10 9 13 7 8 14 5 11 6 3 4 1 12 0 
10 4 3 5 6 0 12 14 2 13 7 9 11 8 1 
4 9 7 14 13 1 8 12 10 5 6 3 2 0 11 
9 3 6 12 5 11 0 8 4 14 13 7 10 1 2 
3 7 13 8 14 2 1 0 9 12 5 6 4 11 10 
7 6 5 0 12 10 11 1 3 8 14 13 9 2 4 
6 13 14 1 8 4 2 11 7 0 12 5 3 10 9 

13 5 12 11 0 9 10 2 ö 1 8 14 7 4 3 
5 14 8 2 1 3 4 10 13 11 0 12 6 9 7 
14 12 0 10 11 7 9 4 5 2 1 8 13 3 6 
12 8 1 4 2 6 3 9 14 10 11 0 5 7 13 
8 0 11 9 10 13 7 3 12 4 2 1 14 6 5 

generated by A)     1     2     3 
^1   11   10     7 

4  5  6 7 8 9 10 11 
9 14 13 6 0 3 4 2 

12 13 
5 

14 
12 and 
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0 1 2 3 4 5 6 7 T 9 10 11 12 13 14 
7 4 8 9 11 2 5 12 13 10 o 14 I 3 6 

11 11 13 10 14 8 2 1 3 0 7 6 4 9 5 
1 14 3 0 6 13 8 4 9 7 12 5 11 IQ 2 
4 6 9 7 5 3 13 11 10 12 l 2 11 0 « 

11 5 10 12 2 9 3 14 0 1 4 9 <? 7 I? 
14 2 0 1 8 10 9 6 7 4 11 13 ? 12 3 
6 8 7 4 13 0 10 5 12 11 14 3 2 1 9 
5 13 12 11 3 7 0 2 1 14 6 9 ß 4 10 
2 3 1 14 9 12 7 8 4 6 5 10 13 11 0 
8 9 4 6 10 1 12 13 11 5 2 0 3 14 7 

13 10 11 5 0 4 1 3 14 2 t 7 9 i 12 
3 0 14 2 7 11 4 9 6 8 13 12 10 5 l 
9 7 6 8 12 14 11 10 5 13 3 1 0 2 4 
10 12 5 13 1 6 14 0 2 3 9 4 7 8 11 

generated by (? 1     2     3    4    5     6     7     8    9     10     11     12     13     1 
4    8    9   11     2     5   12   13   10       0     14       1       3 :)• 

Whether or not   {L., L,, L.} can be embedded in an  0(15, t), t > 3,   set 

is an open problem (see Hedayat fl970]), 

V. 4.   Concluding Remark 

Johnson et al.  [1961]  andBoseetal.  [1960J   independently found, by an 

electronic computer, five mutually orthogonal latin squares by first finding five 

mutually orthogonal maps for an abelian group of order 12.   The  0(12, 5)   set 

exhibited below is the set found by Johnson et al.  [1961] .   Note that the top 

square is obtained, after a proper renaming, as the direct product of a latin square 

of order 2 and a cyclic litin square of order 6 being both orthogonally mateless. 

Moreover, every other square is obtained by proper row permutations, determined 

by an orthomorphism, from the top square. 

Final Remark.    The group method fails to produce an   0(n,t)   set,   t > 2   for any 

n   of the form   4t + 2 .   This is so because the Cayley table of any group of order 

n = 4t + 2,   which is a latin square of order  n,   is orthogonally mateless. 
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0 1 Z 3 4 5 6 7 8 9 10 J 1 

5 0 1 2 3 4 11 6 7 H 9 10 
4 5 0 1 2 3 10 11 6 H % 
3 4 5 0 1 2 9 10 1 1 7 H 
L 3 4 5 0 1 8 9 10 1 1 ^ 7 
1 2 3 4 5 0 7 H \ 10 1 1 6 
6 7 8 9 10 11 0 1 2 4 5 
11 6 7 8 9 10 5 0 1 .3 4 
10 11 6 7 8 9 4 5 0 2 3 
9 10 11 6 7 8 3 4 5 0 1 2 
8 9 10 11 6 7 2 3 4 5 0 1 
7 8 9 10 11 6 1 2 3 4 5 0 

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 
6 7 8 9 10 11 0 1 2 3 4 5 3 4 5 0 1 2 9 10 1 1 6 7 8 
10 11 6 7 8 9 4 5 0 1 2 3 6 7 8 9 10 11 0 1 2 3 4 5 
4 5 0 1 2 3 10 11 6 7 8 9 5 0 1 2 3 4 11 6 7 8 9 10 
11 6 7 8 9 10 5 0 1 2 3 4 9 10 11 6 7 8 3 4 5 0 1 2 
5 0 1 2 3 4 11 6 7 8 9 10 7 8 9 10 11 6 1 2 3 4 5 0 
9 10 11 6 7 8 3 4 5 0 1 2 4 5 0 1 2 3 10 1 1 6 7 8 9 
7 8 9 10 11 6 1 2 3 4 5 0 10 1 i 6 7 8 9 4 5 0 1 2 3 
2 3 4 5 0 I 8 9 10 11 6 7 1 2 3 4 5 0 7 8 9 10 1 1 6 
8 9 10 11 6 7 2 3 4 5 0 1 2 3 4 5 0 1 8 9 10 n (. 7 
1 2 3 4 5 0 7 8 9 10 11 6 1 1 6 7 8 9 10 5 0 1 2 3 4 
3 4 5 0 1 2 9 10 11 6 7 8 8 9 10 1 1 6 7 2 3 4 5 0 1 

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 
r— 

6 7 8 9 10 1 1 
10 11 6 7 8 9 4 5 0 1 2 3 2 3 4 5 0 1 8 9 10 i 1 6 7 
5 0 1 2 3 4 11 6 7 8 9 10 7 8 9 10 11 6 1 2 3 4 5 0 
7 8 9 10 11 6 1 2 3 4 5 0 8 9 10 11 6 7 2 3 4 5 0 1 
1 2 3 4 5 0 7 8 9 10 11 6 4 5 0 1 2 3 10 1 1 6 7 8 9 
9 10 11 6 7 8 3 4 5 0 i 2 11 6 7 8 9 10 5 0 1 2 3 4 
3 4 5 0 1 2 9 10 11 6 7 8 10 11 6 7 8 9 4 5 0 1 2 3 
8 9 10 11 6 7 2 3 4 5 0 1 6 7 8 9 iO 11 0 1 2 3 4 5 
4 5 0 1 2 3 10 11 6 7 8 9 9 10 11 6 7 8 3 4 5 0 1 2 

11 6 7 8 9 10 5 0 1 2 3 4 5 0 1 2 3 4 11 6 7 8 9 10 
6 7 8 9 10 11 0 1 2 3 4 5 3 4 5 0 1 2 9 10 N 6 7 8 
2 3 4 5 0 1 8 9 10 11 6 7 1 2 3 4 5 0 7 8 9 10 1 1 6 
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VI.    Projecting Diagonals Construction of 0(n, t) Sets 

A very simple procedure (sort of the "man-on-the-street" approach) of 
» 

constructing balanced incomplete block and partially balanced incomplete block 

Z 
designs for   v = k     items in incomplete blocks of size  k   has been utilized 

since the late 1940's by the author and has its counterpart In constructing  0(n,t) 

sets.   First we shall illustrate its use in incomplete block experiment design 

construction, and then we show how it applies to the construction on  0(n,t) set. 

The theoretical basis for this method may be derived directly from the preceding 

section. 

The procedure becomes apparent through an example.   Suppose that  v * 9 

and  k = 3 .   After writing the first square as illustrated below, take successive 

diagonals of the preceding square and use them to form the incomplete blocks of 

a square, thus: 

Square 1 Square 2 Square 3 Square 4 
1 2 3 1 5 9 1 6 8 1 4 7 

4 5 6 2 6 7 2 4 9 2 5 8 

7 8 9 3 4 8 3 5 7 3 6 9 

As we have noted this is a resolvable balanced incomplete design with the para- 

meters   v = 9=k  ,k=3, r=4 = k + l, b = 12 = k(k+l),   and X.  = 1,   where 

the rows of the above squares form the incomplete blocks. 

2 
To form a partially balanced incomplete block design for  v = k     in in- 

complete blocks of size   k   one may use any   2, any 3, ... , any k arrangements 

(or squares).   To illustrate the formation of a partially balanced incomplete block 
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design for  v =  6 = k(k-l),   r = 2,3, . . .,k,   and   k" = k-1 - 2   simply delete the 

last set of  k  numbers, i.e.   7,8, and 9   from the last   k= 3   arrangements.   The 

deletion of certain symbols from the set  1, 2, . .., v  is known as "variety cutting". 

2 
For  k   =25  and  k = 5  partially balanced incomplete block designs may be 

* + constructed for v = 10   and  k   = 2, v = 15 and k   = 3, and v = 20 and k1 = 4 

by the above "variety cutting" procedure. 

2 
Also, the successive diagonals method is useful for   v = k     in incomplete 

blocks of size  k   for any odd  k .   For example, for  v = 225   and   k = 15   four 

arrangements or squares may be quickly constructed by the above method.   Like- 

wise, the "variety cutting" procedure may be utilized to obtain 2   or   3   arrange- 

ments for  v = I5p,   2 < P <. 15,   varieties in incomplete blocks of size   p   . 

The above method has its counterpart in constructing mutually orthogonal 

latin squares and this possibility is briefly mentioned in Fisher and Yates [1957] 

in this context.   Again the method becomes apparent through an example.   First 

write the latin square in standard order and of the form given below for the first 

square, then project the main right diagonal of the preceding square into the first 

column of a square, and then write the symbol order in the same manner as in the 

first square.   As a first example, let the order of the latin square be   3;   the 

squares are: 

first square 

1 2 3 

2 3 1 

3 1 2 

second square 

1 2 3 

3 1 2 

2 3 1 

third square 

1 2 3 

1 2 3 

I 2 3 
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Thus, the main right diagonai of the first square is   1,3,2   which becomes the 

first column of the second square.   Then, write the first row as   1,2,3,   the 

second row as   3,1,2,   and the third row as   2,3,i.   For the third square, 

which is not a latin square, the right main diagonal of the second square is 

1,1,1 and this becomes the first column of the third square; the rows are then 

completed.   If we then take the right main diagonal of the third square, we ob- 

tain the first square. 

As a second illustrative example, the five squares for order  n = 5   which 

are constructed by successively projecting diagonals, are: 

first square 

1 2 3 4 5 

2 3 4 5 1 

3 4 5 1 2 

4 5 1 2 3 

5 1 2 3 4 

second square third square 

1 2 3 4 5 1 2 3 4 5 

3 4 5 1 2 4 5 1 2 3 

5 1 2 3 4 2 3 4 5 1 

2 3 4 5 1 5 1 2 3 4 

4 5 1 2 3 3 4 5 I 2 

fourth square fifth square 

1 2 3 4 5 2 3 4 5 

5 1 2 3 4 2 3 4 5 

4 5 1 2 3 2 3 4 5 

3 4 5 I 2 2 3 4 5 

2 3 4 5 1 2 3 4 5 

The fifth square is not a latin square but may be utilized to construct the first 

square through use of the method of successive projections of the main diagonals. 

The method may be utilized for any odd order  n  and will produce  q, -1 

orthogonal latin squares for   n = q. q    ...   q     where  q. < q       and q, q, ...  q. 
i      u S 1 1+1 1      & i 
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is the prime power decomposition of n .   Thus, for  n = 15 = 3(5) a pair 

(q.-1 = 3-1 = 2) of orthogonal latin squares is easily produced.   For  n = 35 

5(7),   a quartet of mutually orthogonal latin squares is readily produced by the 

projecting diagonals method. 
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VII.   Relations Between Complete Confounding and Simple Orthomorphlsms 

We shall illustrate the ideas by going through a complete example taking 
2 

n = 12 = 2   X 3 .   For this purpose we take the ring of   12   element« (obtained 

by utilizing Raktoe's [1969J  results) as follows: 

GF(22) il GF{3) K 
0 0 0 0 

1      =^ 3 1 ^ 4 

X 3x 2 2 

x+1 3x+3 

R12 = h®h9 (O»1»2»3.4»5.35«» 3x+1» 3x+2» 3x+3. 3x+4> 3x+5} 

R.     is a commutative ring under addition and multiplication (mod (6, 

2 
3x   + 3x + 3)   in the following sense: 

e.g. :   (a).    (3x+3) + (3x+4) = 6x + 7 = 1;  here we have to reduce 

only mod 6 to get the answer, 

(b).    (3x+l) • (3x+4) = 9x2 + 15x + 4 

s  3x   + 3x -f 4 s 1   . 
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Explicitly, to facilitate arithmetic, the addition and mutliplication of these   12 

elements are: 

+ 0 1 2 3 4 5 3x 3X41 3x+2 3x+3 3x + 4 3x4 5 

0 0 1 2 3 4 5 3x 3x+l 3x+2 3x+3 3x+4 3x4 5 

1 2 3 4 5 0 3x+l 3x+2 3x+3 3x+4 3x+5 3x 

2 4 5 0 1 3x+2 3x+3 3x+4 3x+5 3x 3x41 

3 0 1 2 3x+3 3x+4 3x+5 3x 3x+l 3x42 

4 2 3 3x+4 3x+5 3x 3x+l 3x + 2 3x4 3 

5 4 3x+5 3x 3x+l 3x+2 3x4 3 3x4 4 

3x 0 1 2 3 4 5 

3x+l 2 3 4 5 Q 

3x+2 4 5 0 1 

3x+3 0 1 2 

3x+4 2 3 

3x+5 4 

• 0 1 2 3 4 5 3x 3x+l 3x42 3x4 3 3x4 4 3X+5 

0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 2 3 4 5 3x 3x+l 3x42 3X4 3 3X44 3x+5 

2 4 0 2 4 0 2 4 0 2 4 

3 3 0 3 3x 3x+3 3x 3x43 3x 3x4 3 

4 4 2 0 4 2 0 4 2 

5 1 3x 3x+5 3x44 3X4 3 3x42 3x41 

3x 3x+3 3 3X4 3 3 3X4 3 3 

3x+l 3x+4 5 3x 1 3X42 

3x+2 3X41 3 3x45 1 

3x+3 3x4 3 3 3x 

3x+4 3X4 1 5 

3x+5 3X44 
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Now, associate with a latin square of order  12  the   3  X4   = [3X 4] X [3X 4] 

= 12 X 12   lattice square with the following breakdown of the   143  degrees of 

freedom corresponding to a four-factor factorial: 

A           2 cr         3 
B4         * D3 

AV    2 C3D3             3 

AB       2 C3D3X          3 

- 
^ 

C3D3X+3      3y 

^N- 

'Av 6 B4C3 6 
»4„4^3 
ABC 6 AVC

3 
6 

AV 6 B4D3 6 AVD
3 

6 AVD
3 

6 

AVD
3 

6 BVD
3 

6 A4B4C3D3 6 A4B2C3D3 6 

A4C3D3X 6 B4C3D3X 6 A B C D 6 A4B2C3D3X 6 

A4C3D3X+3 6 B4C3D3X+3 6 
»4«4^3T,3x+3 
A B C  D 6 A4B2C3D3X+3 6 

For any row or column confounding we need to confound effects totaling up to   11 

degrees of freedom.   There are natural candidates available.   In fact, we may 

choose for our first lattice square the confounding scheme in many ways.   A 

scheme resulting in a pair of orthogonal latin squares is the following: 
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Using the complete confounding approach as outlined above, one can construct 

2 
min [ (2 -1), (3-1)]   = 2   mutually orthogonal latin squares and no more as can 

easily be observed from the degrees of freedom table. 

From the multiplication table of our ring   R.,,   we observe that   1, 5, 3x+l, 

3x+2, 3x+4 and 3x+5   are the   6  non-zero divisors   (i.e. elements with multiplica- 

tive inverses).   Following Bose, Chakravarti and Knuth [I960] , we consider 

simple automorphisms in   R.     of the form: 

a(r) = r r 

where  r    is a given fixed element having a multiplicative inverse (because only 

these elements are capable of producing automorphisms of  R.-) .    Let now our 

aim be to produce two orthomorphisms which in turn will produce an   0(12, 2) 

set.   For this purpose consider the automorphisms: 

I(r) = r 

a(r) = r   • r    . 

Now  I  is orthogonal to  a  which implies the condition that r  in the equation 

!12 
[T   • r-r]  = c   has a unique solution for every   c  of  R.»   (see Mann [1949], 

pp. 103-105).    In our setting this means that  r(r  -l)=c  has a unique solution, 

i.e. ,   r(r   + 5) = c   has a unique solution which in turn implies that   (r   + 5) 

exists in   R,-, • 

Substituting in the values of  r     we see that: 

[1 + 5]       does not exist in   R.. 

[5 + 5] "       "        "      "      " 

[ (3x+l]   + 5] "    does not exist in   R 

i 
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[(3x-lZH  5]       =  [3x+lJ        exists in   R 
it. 

[(3x+4) -i  5]        docs not exist, in   R 

[ (3x+5) + 5]       =| 3x+4]        exists in   R , 

Hence we have obtained two pairs of orthomorphisms nan   ly 

I(r) = r I(r    -  r 
and 

aJT) ~ (3x^Z ir a (r) = \ ix-\ 5 )r 
i c, 

The   0(12., 2)   set presented above using complete confounding corresponds to 

the first pair of maps.    R may be easily shown that simple maps oi the ;.,■].■■ 

a(r) = r    • r   lead to   0(12, 2)   sots or in general to an   0(n, a)   ..   t, where 
n, n_ n, k     n, 

a = min (p.   -1, p    -I, ,,,, p,    -1)   and   n =   II   p,      so that '.'.<•       mplete con- 
id* l=l    i 

founding approaoh is equivalent to the construction of a set oi a orthomorphism! 
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VIII.   Some Remarks on "Orthomorphism" Construction of  0(nt t) Sets 

In 1959 and/or i960 E. T. Parker showed by a combination of classifica- 

tion of cases (with considerable elimination of isomorphic repetition accessible 

to cut down on computer time, followed by computer runs) that there are obtain- 

able only   5   orthogonal latin squares of order 12, all restricted to be copies of 

the non-cyclic Abelian group with latin squares related by row permutations. 

(Some researchers [6, 31] call this the method of orthomorphlsms. Parker considers 

this no method, but only based on freaks of luck; further, Parker feels that 

"orthomorphism" admits no precise definition.) 

Parker made another finding, also by hard classification of cases followed 

by computer runs, which Marshall Hall feels is more important than that cited 

above.   No pair of order-12 orthogonal squares of the type mentioned can be ex- 

tended to a complete set of any sort; i.e. , further orthogonal latin squares are 

allowed to be completely general. 

What might be obtainable for orthogonal squares of order   20   in like 

fashion, row-permuting the non-cyclic Abelian group of order   20, is an interest- 

ing matter for speculation — conceivably one might even produce a complete set 

(19 orthogonal squares equivalent to a plane).   Knuth and Parker discussed the 

problem about 1963, and concluded that exhaustive search is out of the question; 

still a fortunate sample of cases might produce an attractive result. 

In 1960 Parker looked at the row-permutation ("orthomorphism" of Bose 

and Mendelsohn) approach for the group of order  15,   and proved by Hasse- 

Minkowski invariants that a comulete set could not be so obtained.   He dropped 
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further work; but some persistence could quite possibly yield as much as five 

orthogonal squares of order   15 . 

A hybrid attack on order   15   or   20   might be undertaken by an ambitious 

investigator.    (The facts for order  12   mentioned above rule out chances here. ) 

One might produce sets of orthogonal latin squares of row-permuted group type, 

using automorphisms of the group latin squares to eliminate — or, that failing, 

reduce — isomorphic repetition.    It would not be shrewd to program a computer 

to produce all transversals of a group latin square, for running time and output 

would be excessive; then for any hint of efficiency it would be necessary to turn 

about and do a reduction on the computer output.   After a set of row-permuted 

latin squares (possibly exhaustive for order   15,   but almost certainly only a 

sample for order   20 ) large enough that computer searching would require 

realistic amounts of time, one might proceed with the next step.    Produce all 

transversals of the set of orthogonal squares by computer, then fit these together 

in all possible ways (again by computer) to form orthogonal mates of the preceding 

set of orthogonal latin squares.   Unlike Parker's assertion above about complete 

sets of order-15 squares, there is no known argument implying impossibility of 

producing   14  orthogonal latin squares of order   15   by this hybrid attack. 
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„ 

IX.    Oval Construction of  0(n. t) Sets 

The approach to construction of finite projective planes used here differs 

from the ones known in the literature.   The main idea is to make use of the 

maximum number of points no three on one line in a finite projective plane of 

even order called henceforth an oval.   The oval cannot consist of more than 

n+ 2  points in a plane of order  n   .   This is obvious since through each point 

pass   n + 1  lines and the lines through any point of the oval can contain at most 

one more point of the oval.   On the other hand, if a plane of order n  does include 

an oval consisting of the maximum number of points, namely  n + 2,   then the 

lines of the plane can be classified into two categories in respect to this oval. 

One category consists of lines intersecting the oval in two points called secants, 

the other of lines having no points of the oval called non-intersectors.   The 

number of secants is clearly     ' ^      '   and the number of non-inters ectors 

is     —^—    .     Through each of the   n -1  points which do not belong to the 

oval there would have to pass     —r—    secants and     —     non-inters ectors. 

Hence,   n   must be even. 
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It is well-known that removing one line from the plane, usually called 

2 
the line at infinity, the remaining     n   + n   lines can be arranged into   2n   lines 

passing through two points at infinity which are arbitrary up to notation and 

2 
coordinatization of the plane, and     n -n     lines belonging to   n-1    mutually 

orthogonal latin squares.   If the line at infinity is chosen to be a secant and 

there are     2n     lines, the lines pass through the two points of the oval such 

that each of the   n-1  latin squares consists of     ~     secants and     —     non- 

intersectors passing through each of the    n-1    points at infinity other than the 

points of the oval. The   2n   lines correspond to the rows and columns of the latin 

square. 

Using the described method, it v/as assumed that a plane of order    10 

exists.   Under this assumption 21     lines could be exhibited arbitrarily up to 

notation.   Out of these lines one was taken to be the line at infinity and the 

remaining 20   used to coordinatize the plane.      Then by trial and error twenty 

more lines were found which formed two orthogonal latin squares.   The method 

used to construct these squares differs from the one described in the literature. 
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Unfortunately no more squares could be found using this method and a high speed 

computer established that the two squares did not yield an additional mutually 

orthogonal mate.   Clearly it could happen that the choice of the first two was 

unfortunate.   The same method was applied to the plane of order   12  .   Here 

the trial and error method failed to produce even two orthogonal squares.   It 

may be worthwhile to remark that the construction of the plane and consequently 

the search for orthogonal latin squares does not require the assumption that 

the oval consists of the maximum number of points   n + 2   .   However, if the 

plane does not include an oval consisting of n + 2  points the lines could not 

be classified into two categories only and this complicates the construction of 

the plane.   Let us illustrate the method in the case     n    equals    10 .   It is 

easy to show that in this case the oval must consist of at least    6    points. 

However, the case of an oval of    6   points would be ignored since in this 

case every quadrangle would have to have collinear diagonals.   On the other 

hand, a plane of order ten must be non-Desarguessian and hence must contain 
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a nondegenerate quadrangle with noncollinear diagonals.    Suppose that the 

plane contains a quadrangle with noncollinear diagonals and suppose that the 

plane contains an oval consisting of seven points then the    104     points of the 

plane which do not belong to the oval could be classified into three categories: 

(1)      points lying on   3   secants,   1   tangent   7   nonintersectors 

(ii) " "      "    2       " 3       " 6 

(ill)        " "      ■•    i        - 5        " 5 

Let us name the number of points in each category by  x, y, z   respectively. 

Clearly  x + y + z = 104 . 

Counting the intersections of the secants and the tangents we get the 

further equations: 

3x + y    = 105 

3y + 10z = 525 

The unique solutions of this system of equations are  x = 20, y = 45, z = 39 . 

One could start the construction of the plane under the present assumption and 

Investigate the possibilities of obtaining orthogonal latin squares in this way. 
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X.    Code Construction of  0{n. t) Sets 

Given an n-symbol alphabet, e.g. ,   l,2,.,.,n,   and a set of k-tuples 

of the   n   symbols, we denote the set of all k-tuples by   C,       .   This set may 

be thought of as a vector space or as a k-dimensional hypercube with edges of 

length   n   .   Any subset of   C,        is denoted as a block code with a block length 

of  k   .   The elements of the subset are denoted as code words.    The number of 

symbols by which any two code words differ is called the Hamming distance. 

If any pair of code words in the subset differs by a Hamming distance of at 

least  r,   the block code is called a distance  r  code.   A distance  r  code is 

called an   (r-l)/2-error correcting code because fewer than   (r-l)/2   changes 

leaves the word closer to its original form than to any other code word in the 

subset.   For similar reasons, a distance  r code has also been designated as 

an   (r-D-error-dectecting code. 

In an interesting paper, Golomb and Posner [1964] discuss the relation- 

2 
ships between a subset of  n    code words and an  0(n,t)  set and relate these 

2 
to ideas developed from a consideration of a set of n     super rooks of power t 

t+2 
Oi m i  n        chessboard such that no two super rooks attack each other.   The 

hcv» concepts of rook domains and rook packing were found to be very useful in 

providing a geometrical view of the results. 

2 
Any subset of  n    words from   C,       which forms a single-error-detecting 

3,n 

code may be used to construct a latin square of order  n  as any pair of the 

2 
triples differs by at least two symbols.   Likewise, any subset of  n     words 
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from   C   2      with a Hamming distance of   t -I 1  may be utilized to construct 

an  0(n,t)   set.   These results are embodied in the following theorem (from 

Golomb and Posner [1964] ): 

Theorem X.l.      The following three concepts are equivalent: 

1)  an  0(n,t)  set. 

2 t+Z 
11)  A set of  n     nonattacklng super rooks of power  t   on the   n        board. 

2 
For even t,   also the following, a set of  n     super rooks of power   t/2   on the 

t+2 
n        board such that no cell is attacked twice; that is. such that the rook 

domains are nonoverlapping. 

2 
ill)  A distance  t + 1  code of block length   t + 2   with   n     words from an 

n-symbol alphabet. 

For those Interested in code construction, reference may be made to 

Mann [1968] and Peterson [1961] and the literature citations therein.   We shall 

2 
merely illustrate the method of construction of an   0(n,t)   set from   n     words 

of length   t + 2   and Hamming distance  t + 1   through an example.    Let   n = 3 

2 
and  t = 2   .   Then the  n    =9   code words with length   4  and Hamming distance 

3  and the corresponding latin squares are: 

latin squares of order   3 

0      1      2 0      1      2 

0000    0111     0222 0       0      1      2 0 

1012    1120    1201       to produce       1        1      2     0     and      1 

2021     2102    2210 2       2      0      1 2 

0 1 2 

2 0 1 

1 2 0 

where the first symbol corresponds to row number, the second to column number, 
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the third to symbols in the first latin square, and the fourth to symbols In the 

second latin square.   The two latin squares form an  0(3,2)   set.   Note that any 

pair of the quadruples differs in at least three symbols. 

The analogy of the above with many of the concepts from fractional repli- 

cation and orthogonal arrays is immediately apparent.   The equivalences of many 

of the results in these fields need to be systematically noted much In the same 

manner that Golomb and Posner [1964] note various equivalences among  0(n,t) 

2 t+2 sets, error-correcting codes, and   n     nonattacking rooks on an  n        chess- 

board. 
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XI.   Palrwlse Balanced Design Construction of 0(n, t) Sets 

Central to the constructions of orthogonal latin squares of Bose and 

Shrikhande [1959] and of Parker [1959, 1960] is the following which might be 

called a "Folk theorem," being credited to no specific investigator:   From a set 

of t   orthogonal latin squares of order  n   one may produce a set of   n     ordered 

(t+2)-tuples on  n     symbols such that each pair of distinct positions contains 

each ordered pair of symbols (exactly once); the converse construction can also 

be carried out.    (Some, such as Bose, prefer to call the set of (t+2)-tuples an 

orthogonal array. )  There is nothing difficult to prove in this construction.   Two 

arbitrary positions in the   (t+2)-tuples are identified with row and column indices 

in matrices, and each other position with entries in one of Ina matrices.   The 

equivalence between orthogonality of latin squares and the conditions on the 

(t+2)-tuples is then fairly apparent. 

Parker [I960]  contributed the following to the construction of orthogonal 

latin squares.   If there exists a pair of orthogonal Jatin squares of order   m,   then 

there exists a pair of orthogonal latin squares of order   3m + 1 . 

Let the   3m + 1   symbols be  X,,... ,X     and the residue classes   (mod 2m + 1). 1 m 

Form the (latin square) array 

^        0        i        -i 

0 X, -i i 
A: i 

i -i Xi 0 

-i i 0 
*i 
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For each   i,   1 1 i <. m,   each row of  A  an ordered quadruple.    In turn, the 

list of quadruples is built up by adding each integer   (mod 2m + 1)  to all four 

positions at once, the  X    symbols being unchanged by the addition.   The set 

of   4m(2m + 1)   ordered quadruples just described contains in each pair of distinct 

positions exactly one occurrence of each ordered pair made up of an  X.   and a 

residue class in either order, and of each ordered pair made up of two distinct 

residue classes.   The required set of ordered quadruples is completed by adjoin- 

ing:  i)  all ordered quadruples   (j,i,j,j),   j = 0, ..., 2m;   ii)  a set of ordered 

quadruples on the  X,   symbols corresponding to a pair of orthogonal latin squares 

of order   m   guaranteed by the hypothesis to exist. 

Bose and Shrikhande (1959, published 1959 and I960 partly in a 3-author 

paper with Parker) developed a sequence of constructive theorems which led in 

steps to disproof of Euler's conjecture for all orders   4t + 2 > 6 .   Their central 

theorem given here does not exhaust their methods, but virtually all their results 

rest on this theorem.   We begin with a definition.   A pairwise balanced design. 

PB(n; k,,... ,k )   is a collection of subsets of a set of  n   elements, each sub- 

set having number of elements one of the  k.,   and such that each pair of distinct 

elements in the set of  n  occurs in a unique subset of the   PB .    (Note:  unlike 

in balanced incomplete block designs, the subsets of a   PB  are not restricted to 

have equal numbers of elements.)   Now for the main theorem of Bose and Shrikhande. 

If a   PB(n; k.,... ,k )   existsr and for each   i,   1 <. i < t,   a set of  m  orthogonal 

latin squares of order  k.   exists, then a set of  m- 1  orthogonal latin squares of 

order   n   exists.     Loosely speaking, the sets of ordered tuples for each subset 
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of the   PB are constructed and these fit together to form a set of ordered tuples 

for the full set of  n   elements.   The decrease from   m   to   m-1  orthogonal latin 

squares occurs because in fitting the pieces together to form the large set of 

ordered tuples, it is necessary that each set of ordered tuples formed from a 

subset of the  PB  include each   (i,i,...,i),   where   i  ranges over the elements 

of that subset.    (It is sufficient that this condition be fulfilled in the construc- 

tion.   Thus the theorem might be stated in slightly stronger form:   "If ... 1< 1< t , 

a set of  m  orthogonal latin squares of order  k.   with a transversal exists, then 

a set of  m  orthogonal latin squares of order  n   exists. ")    Now for a more nearly 

formal version of the proof.   If there exists a set of  m  orthogonal latin squares 

2 
of order  n,   then there exists a set of the appropriate sort of  n    ordered 

(m-fl)-tuples with each symbol repeated in an   (m+l)-tuple   m + 1  times,    (The 

condition mentioned is satisfied with   (m+2)-tuples if the set of orthogonal latin 

squares has a transversal.)  One need simply put together the ordered tuples on 

each subset of the   PB  in turn, subject to the important condition that within 

each subset of the  PB,   each tuple of repetitions of each symbol be included. 

Carrying this out on the alphabet of the symbols in each subset of the   PB,   one 

has the construction for the set of orthogonal latin squares in the conclusion; 

each ordered tuple of a repeated symbol among the   n   is used only once. 

A representative and very interesting example (Bose and Shrikhande in- 

formed Parker that this was the first case of disproof of Euler's conjecture pro- 

duced in their joint work at a blackboard ) yields   5   mutually orthogonal latin 

squares of order  50  via the   PB  construction.   One forms the affine plane of 
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order   7,   then adjoins exactly one ideal point on each line of one class of paral- 

lel lines.   This yields a   PB(50;8,7).   Since there exist   6  orthogonal latin 

squares of each order   8   and   7,   there exist   6-1=5   orthogonal latin squares 

of order   50 . 

There is a limitation on the Bose-Shrikhande   PB  construction.   Aside from 

trivial   PB   designs, having a single subset of all elements, any   PB  has a sub- 

set with at most one more element than the square root of the number of elements 

in the large set.   Thus other techniques are requisite to produce more than  's/n 

orthogonal latin squares of order not a prime-power. 
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XII.    Product Composition of Ofo, t) Sets 

About 70 years ago, for the first time, Tarry [1899 j in his half-page note 

asserted that If there exists an  0(a,2) set and if there exists an   0(b, 2) set 

then there exists an  0(ab, 2) set.   He exhibited the following   0(12,2) set, by 

composing two  0(3,2) and 0(4,2)   sets, to demonstrate the truth of his asser- 

tion.   Note that in the following square the set of first integers belong to one 

latin square and the set of second integers belong to the second latin square. 

No more description is given by Tarry. 

2-3     1-1 3-2 8-12 7-10 4-11 11-6 10-4 12-5 5-9 4-7     6-8 

3-1     2-2 1-3 9-10 8-11 7-12 12-4 11-5 10-6 6-7 5-8     4-9 

1-2     3-3 2-1 7-11 0-12 8-10 10-5 12-6 11-4 4-8 6-9     5-7 

11-9   10-7 12-8 5-6 4-4 6-5 2-12 1-10 3» 11 8-3 7-1     9-2 

12-7   11-8 10-9 6-4 5-5 4-6 3-10 2-11 1-12 9-1 8-2     7-3 

10-8   12-9 11-7 4-5 6-6 5-4 1-11 3-12 2-10 7-2 9-3     8-1 

5-12 4-1Q 6-11 11-3 10-1 12-2 8-9 7-7 9-8 2-6 1-4     3-5 

6-10 5-11 4-12 12-1 II-2 10-3 9-7 8-8 7-9 3-4 2-5    1-6 

4-11  6-12 5-10 10-2 13-3 11-1 7-8 9-9 8-7 1-5 3-6    2-4 

8-6    7-4 9-5 2-9 1-7 3-8 5-3 4-1 6-2 11-12 10-10 12-1 1 

9-4    8-5 7-6 3-7 2-8 1-9 6-1 5-2 4-3 12-10 11-11   10-12 

7-5     9-6 8-4 1-8 3-9 2-7 4-2 6-3 5-1 10-11 12-12 11-10 

Tarry did not observe any generalization of his method. Perhaps this was 

due to the fact that he, like so many other researchers, was only concerned with 

sets of type  0(n, 2) .   Probably he was not aware of the existence of a larger set. 

About  23   years later MacNeish [1922]  demonstrated: 
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1) The existence and a construction of an   0(n, n-1)   set for  n  a prime or 

prime power integer. 

2) A generalization of Tarry's procedure viz.. if there exists an  0(a, r)   set and 

if there exists an   0{b, r)   set then there exists an   0(ab, r)   set. 
a.   a a 12 t 3) By a successive application of 1) and 2) he showed that if  n = p. p    ... p 

is the prime-power decomposition of  n  then there exists an  0(n, r)   set where 
a, 

r = min{p M,   i = 1,2,... ,t}  . 
a. 

), 
I 

MacNeish could not embed his   0(n, r)   set generated in 3) in a larger 

set.    This unsuccessful attempt, reinforced by Filer's conjecture, led MacNeish 

to prove (erroneously) geometrically that 0(n,z)   sets do not exist for z > r   , 

and therefore, as a confirmation of Euler's conjecture.   The preceding argument 

of MacNeish is known as MacNeish's conjecture in the literature.   By constructing 

an   0(21,3)   set   Parker [1959]  gave a counter example to MacNeish's conjecture. 

Later Bose, Shrikhande, and Parker [I960]  completely demolished Euler's con- 

jecture except for  n = 6 .    It should be mentioned that MacNeish's conjecture 

has not been totally disproved yet.   For instance, no one as yet as far as we know, 

has constructed an   0(15,4)   set (an   0(15,3)   set is given in section V for the 

first time) or an   0(20,3)   set.   We believe that MacNeish should be given sub- 

stantial credit for his non-erroneous contributions.    It is to be regretted that 

MacNeish is often cited in the literature only for his false conjecture. 

Even though Tarry and MacNeish did not attach any name to their pro- 

cedure, it is not difficult to see that it is the method of Kronecker product of 

matrices.   Therefore, we can state, more formally, their results as follows: 
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Theorem (Tarrv-MacNelsh).    Jf.   {A , A-, ..., A }  is an   0(n,r)   set and if 

fB^ B2 B^} is an  O(m.r) set, then   {A, (DB,, A24) B», ,,., Ar ® B }   , 

where ® denotes the Kronecker product operation of matrices, is an  0(nm, r) 

set. 

The preceding arguments clearly support the choice of the title for this 

section and is in contrast to the choice of the name for the procedure given in 

section XIII. 
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XIII.   Sum Composition Construction of 0(nt t) Sets 

XIII. 1,   Introduction 

Perhaps one of the most useful techniques for the con- 

struction of combinatorial systems Is the method of composition.   To mention 

some, here are few well-known examples;  1)  If there exists a set of t  ortho- 

gonal latin squares of order  n.   and If there exists a set of  t  orthogonal latin 

squares of order  n,   then there exists a set of  t  orthogonal latin 

squares of order  nn   .   2)  If there are Steiner triple systems of order v.   and 

v ,   there is a Steiner triple system of order v = v.v   .   3)   If  H.   and   H    are 

two Hadamard matrices of order n.   and  n    respectively, then the Kronecker 

product of  H,   and   H    is a Hadamard matrix of order  n.n     .   4)  If Room 

squares of order  n.   and  n    exist, then a Room square of order n.n    exists. 

5)   If  BIB     i v ,k, \   )  and   BIB(v ,k, \   )  exist and If  f(X.-V^)>k,   then 

2 
BIB (v.v , k,\ X.   )  exists where   f(\  v )  denotes the maximum number of con- 

2 
straints which are possible in an orthogonal array of size   \  v ,   with v    levels, 

strength 2, and Index \    .   6)  As a final example, the existence of orthogonal 

arrays   (^ ^v., q., v., t),   1 = 1, 2, ..., r implies the existence of the orthogonal 

array  (\.v,q, v, t),   where   \ = K.\   ...\ , v« v.v . ..v,   and   q=mln(q.,q , 

..., qr) . 

The reader will note that each of the above examples Involved a product 

tvpe composition.   The method that we will describe utilizes a sum type compo- 

sition, by means of which one can possibly construct sets of orthogonal latin 

squares for all  n > 10 , 

XIII.2.   Definitions 

In the sequel by an  0(n, t)   set we mean a set of t  mutually orthogonal 

letin squares of order  n . 
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a) A transversal (directrix) of a latin square   L  of order  n   on an n-set   Z, 

is a collection of  n   cells such that the entries of these cells exhaust the set 

S and every row and column of  L  is represented in this collection.   Two trans- 

versals are said to be parallel if they have no cell in common. 

b) A collection of  n   cells is said to form a common transversal for an   0(n, t) 

set if the collection is a transversal for each of these  t  latin squares. 

Two common transversals are said to be parallel if they have no cell in common. 

Example,   The underlined and parenthesized cells form two parallel common 

transversals for the following  0(4,2) set. 

1 2 (3) 4 ^ 

(4) 1 2 1 

2 (1) 4 3 

3 4 1 (2)J 

XIII. 3.   Composing Two Latin Squares of Order  n.   and n 

A very natural question in the theory of latin squares is the following: 

Given two latin squares   L.   and  L    of order  n    and  n    (n. > n )  respectively. 

In how many ways can one compose   L.   and   L     in order to obtain a latin square 

L,   of order m,   where  m  is a function of n.   and  n    only?   This question 

can be partially answered as follows.   First, it is well-known that the Kronecker 

product  L, = L. ® L    is a latin square of order m = n.n    irrespective of the 

combinatorial structure of  L.   and  L   .   Secondly, we show that if  L.   has a 

certain combinatorial structure, then one can construct a latin square   L of 
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order   n = n   + n   .   Naturally enough we call this procedure a "method of sum 

composition". 

Even though our method of sum composition does not work for all pairs 

of latin squares, it has an immediate application in the construction of ortho- 

gonal latin squares including those of order  4t + 2, t > 2 .   We emphasize that 

the combinatorial structure of orthogonal latin squares constructed by the method 

of sum composition is completely different from those of known orthogonal latin 

squares in the literature.   Therefore, it is worthwhile to study these squares 

for the purpose of constructing new finite projective planes. 

We shall now describe the method of "sum composition".   Let   L.   and   L- 

be two latin squares of order  n.   and  n.,   n. > n. ,   on two non-intersecting 

sets   2   = {a., a.,..., a    } and  Z    = {b.,b2,...,b    } respectively.    If  L. 

has   n-   parallel transversals then we can compose   L.   with   L_   to obtain a 

latin square   L of order  n = n. + n-   .   Note that for any pair   (n., n.),   there 

exists   L.   and   L,   with the above requirement, except for   (2,1), (2,2), (6,5) 

and   (6,6) . 

To produce   L  put   L    and   L    in the upper left and lower right corner 

respectively.   Call the resulting square   C.,   which looks as follows: 

cr 

Name the n transversals of L. in any manner from 1 to n. , Now fill the 

cell (i, n. + k), k = 1,2,... ,n2, with that element of transversal k which 

appears in row  i,   i = 1,2,... ,n, ,   Fill also the cell   (n, + k,j),   k = l,2,.,,,n2 
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with that element of transversal  k   which appears in column   j,   j = 1,2,... ,n   . 

Call the resulting square   CL   .    Now every entry of   C     is occupied with an 

element either from  2    or  2   ,   but   CL   is obviously not a latin square on 

2    US.   However, if we replace each of the   n.   entries of transversal  k 

with  b. ,   It is easily verified that the resulting square which we call   L  is a 

latin square of order  n   on  2   U 2    . 

The procedure described for filling the first   n.   entries of the row (column) 

n. + k   with the corresponding entries of transversal  k   is, naturally enough, 

called the projection of transversal  k   on the first   n.   entries of row (column) 

n, + k . 

We shall now elucidate the above procedure via an example.    Let   2   = 

{1,2,3,4,5},   2, =  {6,7,8} , 

A ''   »/   ' 

5     yl      2 

4   5 

5     W     2   3    ,4   yc 

'S J    S si 
6   7   8 

and   L    =   7   8   6 

8   6   7 

Note that the cells on the same curve in   L   form a transversal. 

V 

12   3   4   5 

5    12   3   4 

4   5    12   3 

3   4   5    12 

2   3   4   5    1 

6 7   8 
7 8   6 

8 6   7 

and   C, 

1    2 3 4 5 1 2    3 

5    1 2 3 4 4 5    1 

4   5 1 2 3 2 3   4 

3   4 5 1 2 5 1    2 

2   3 4 5 1 3 4   5 

1    3 5 2 4 6 7   8 
5   2 4 1 3 7 8   6 
4    1 3 5 2 8 6   7 
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And finally 

L = 

6   7   8   4   5 1    2   3 
7   8   2   3   6 4   5    1 
8   5    16   7 2    3   4 
3   4   6   7   8 5    1    2 
2   6   7   8   1 3   4   5 
13   5   2   4 6   7   8 
5   2   4   13 7   8   6 
4    13   5   2 8   6   7 

which is a latin square of order 8 on  2   U S    = {1,2,... ,8} . 

Remark.    Note that it is by no means required that the projection of transversals 

on the rows and columns should have the same ordering.   Indeed, for the fixed 

set of ordered  n     transversals, we have   n !   choices of projections on columns 

and   n '.   choices of projections on the rows.   Hence we can generate at least 

2 
(n I)     different latin squares of order  n = n. + n     composing L.   and   L- . 

XIII. 4.    Construction of  0(n,2)   Sets by Method of Sum Composition.    In order 

In order to construct an 0(n, 2) set for n ■ n. +n , we require that n. > 2n2 and 

there should exist an   0(n  ,2)   set, and an   0(n1,2)   set with   2n2  parallel 

transversals.   It is easy to show that any  n > 10   can be decomposed in at least 

one way into   n. + n     which fulfill the above requirements.   We now present two 

theorems which state that for certain  n  one can construct an  0(n,2)   set by the 

method of sum composition. 

Theorem XIII. 4.1.    Let  n   = p   > 7   for any odd prime   p  and positive integer 

a,   excluding   n. = 13.   Then there exists an   0(n,2)   set which can be constructed 

by composition of 0(n.,2)   and  0(n2,2)   sets for   n. = (n.-l)/2   and 

n = n, + n. 
1 '2   ' 
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We shall first give the method of construction and then a proof that the 

constructed set is an  0(n,2)   set. 

Construction.    Let   B(r)   be the   n  X n    square with element   ra + a.   in its   (i,j) 

cell,   a , a., 0 # r  in   GF(n ),   i,j = 1,2,.., ,n   .    Then it is easy to see that 

{B(l), B(X), B(y)},   ysx    , x # y,   is an   0(^,3) set.   Consider the n   cells in B(l) 

with   a   + a, = k  a fixed element in   GF(n.) .   Then the corresponding cells in 

B(x)  and   B(y)  form a common transversal for the set   {B{x), B(y)}.   Name this 

common transversal by  k .   It is then obvious that two common transversals   k. 

and  k  , k. # k     are parallel and hence   {B(x), B(y)} has   n,   common parallel 

transversals.   Now let   (A,,A} beany   0(n2,2)   set, which is known to exist, on 

a set n non-intersecting with   GF(n1) .   For any   \   in   GF(n,)   we can find 

(n. -l)/2  pairs of distinct elements belonging to  GF(n])   such that the sum of 

the two elements of each pair is equal to  X .   Let   {S} and   {T} denote the 

collection of the first and the second elements of these   (n. - l)/2   pairs respec- 

tively.   Note that for a fixed  \   the set   {S} can be constructed in   (n -l)(n.- 3) 

2 
...1  distinct ways.   Now fix  \   and let   L.   denote any of the   (nJ )    latin 

squares that can be generated by the sum composition of   L(x)   and  A    using 

transversals determined by the   n     elements of   {S} .    Let   L,   be the latin square 

derived from the composition of  L(y)  and  A    using the   n     transversals de- 

termined by the elements of   {T} and the following projection rule;   Project trans- 

versals   t ,   i = 1,2,... ,n    on the row (column) which upon superposition of 

L-   on   L,   this row (column) should coincide with the row (column) derived from 

the projöction of the transversal  \-t. .   shortly we ahall prove that   { U»!^ 

forms on  0(nJ2)   set. 
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The preceding arguments shows that   {L. ,L } can be constructed non- 

2 
isomorphically in at least   (n-3)(n ! ) [n (n.-l)(n-3)... 1J    ways.    For instance 

in the case of   n   = 7,   there is at least   12096   non-isomorphic pairs of ortho- 

gonal latin squares of order  10 .   Therefore, Euler has been wrong in his con- 

jecture by a very wide margin. 

Note that we can construct infinitely many pairs of orthogonal latin squares 

of order   4t + 2   by the method of theorem XIII. 4.1.   For  p = 7 mod 8   and   a  odd 

pa = (8t + 5)/3   .    Hence   n. + n    = 4t + 2 . 

Proof;  The constructional procedure clearly reveals that: 

A. L.   and   L_   are latin squares of order   n   on   GFIn.) U n . 
i c l 

B. Upon superposition of   L.   on   L?   the following are true; 

b..    Every element of  fi appears with every other element of  n . 

b .   Every element of S2 appears with every element   of  GF(n,) . 

b .   Every element of  GF(n1)   appears with every element of  n . 

Therefore, all we have to prove is that every element of  GF(n1)  appears with 

every other element of   GF(n.) .   To prove this recall that   B(x)   is orthogonal to 

B(y) .   However, since we removed the   n?   transversals from   B(x)   determined 

by the   n     elements of   {S} and  n     transversals from   B(y)   determined by the 

n     elements of   {T}  therefore the following   2n n    pairs have been lost. 

(xa. + a,, ya. + a.)   with   a   + a. = y for any   v « GF(n.),    y * \ . 

We claim that the given projection rules guarantee the capture of these lost pairs 

by the   2n n.   bordered cells.   To show this note that the superposition of the 
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projected transversal   s   from   B(x)   on the projected transversal   t = \ - s   from 

B(y)   will capture the   n    pairs 

(xa, + a,, ya   + a.)   with   a, + a, = k = [y(\-s) + sj/(l-l y) 

if these transversals have beer projected on row border and the   n    pairs 

(xa   + a,f ya   + a.)   with   a   + a. = k =  [s(y-l) + (s- \ )(x-l)J /(y-x) 

if these transversals have been projected on column border.    Now because 

k + k* = \   and if   s. ^ s     then   k. # k     and  kl # k'    hence the   2n n    pairs 

which have been resulted from the projection of transversals determined by  (S} 

and   {T} will jointly capture the   2n-n]   lost pairs and thus a proof. 

We shall now clarify the above constructional procedure by an example. 

Example.    Let  n   = 7,   GF(7) = {0,1,2 6}.   Then for  x = 2, y = x"   =4 

we have 

{B(l), 8(2), 8(4)} = 

0123456 0123456 0123456 
1234560 2345601 4560123 
2345601 4 f) 60123 1234560 
3456012 6012345 5601234 
4560123 1234560 2345601 
5601234 3456012 6012345 
6012345 5601234 3456012 

For n2 = (n -l)/2 = 3 let n2 = {7,8,9} and 

7   8   9    7   8   9 
{A,A }= 8   9   7, 9   7   8   .    Finally for   \  = 0,    {S}=  {1,2,3}  and 

9   7   8   8   9   7 

{T}= {6,5,4} we have   {ipL^ 
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0 7 8 9 4 5 6 1 2 3 0 1 2 3 7 8 9 6 5 4 
7 8 9 5 6 0 1 2 3 4 4 5 6 7 8 9 3 2 1 0 
8 9 6 0 1 2 7 3 4 5 1 2 7 8 9 6 0 5 4 3 
9 0 1 2 3 7 8 4 5 6 5 7 8 9 2 3 4 1 0 6 
I 2 3 4 7 8 9 5 6 0 7 8 9 5 6 0 I 4 3 2 
3 4 5 7 8 9 2 6 0 1 8 9 1 2 3 4 7 0 6 5 
5 6 7 8 9 3 4 0 1 2 9 4 5 6 0 7 8 3 2 1 
2 1 0 6 5 4 3 7 8 9 3 0 4 1 5 2 6 7 8 9 
4 3 2 1 0 6 5 8 9 7 6 3 0 4 1 5 2 9 7 P 
6 5 4 3 2 1 0 9 7 8 2 6 3 0 4 1 5 8 9 7 

the reader can easily verify that   {L , L_} is an  0(10,2)   set. 
1     • 

Remarks. 

1) The method of theorem XIII. 4.1 fails for  n. = 13  only because there is no 

0(6,2)  set.   Otherwise, there will be no orthogonality contradiction on the other 

parts of  L.   and   L2   with their  6x6  lower right square missing. 

2) In the case of  n, = 7,   if we let   {S} = {0,1,3} and   {T} = {2,4,5} then the 

requirement   y = x      is not necessary.   However then we do not have a unified 

projection rule for the formation of  L_   as was provided for the case  y = x      by 

theorem XIII. 4.1.   To give the complete list of solutions let (a ,a    a  )  and 

(b.,b  ,b )   be any two permutations of the set   {8,9,10}.   If we project trans- 

versals   (0,1,3)  on the rows   (a ,a   ,a  )  and columns   (bpb  ,b )   in the forma- 

tion of  L.,   then the following table indicates what permutation of transversals 

{2,4,5} should be projected on the rows   (a ,a   ,a  )  and columns   (b^b  ,b ) 

in the formation of   L2 .   Obviously these permutations will be a function of the 

pair   (x,y) . 
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Pair 
(x,y) 

Rows 

V2'a3 
Columns 

brVb3 
(2,3) 4, 2, 5 4, 2, 5 

(2,3) 2, 5,  4 2, 5,  4 

(2,4) 2, 5, 4 4, 2, 5 

(2,5) 4, 2, 5 4, 2, 5 

(2,6) 2, 5,  4 2, 5, 4 

(3,4) 2, 5, 4 2, 5, 4 

(3,5) 2, 5, 4 4, 2, 5 

(3,5) 4, 2, 5 5,  4, 2 

(3,5) 4, 2, 5 2, 5, 4 

(3,5) 5, 4, 2 2, 5, 4 

(3,6) 4, 2, 5 2,  5, 4 

(3,6) 5, 4, 2 4, 2, 5 

(4,5) 2, 5, 4 2, 5, 4 

(4,6) 5, 4, 2 4,  2, 5 

(4,6) 2, 5, 4 2, 5, 4 

(4,6) 5, 4, 2 5, 4, 2 

-1 

(This table Is by no means exhaustive.) 

The reader may note that whenever y = m~* In the above table the given 

solutlon(s) are different from the one provided by the method of theorem XIII. 4.1. 

Thus we can conclude that any pair of orthogonal latin squares of order 7 

based on the  GF(7;   can be composed with a pair of orthogonal latin squares of 
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order 3 and make a pair of orthogonal latin squares of order   10 .    In addition, 

since we have six choices for   (a^a   ,a  )  and   (b.,b  ,b  )   hence from every 

line in the above table we can produce   36  non-isomorphic   0(10,2)   sets or 

16 X  36 = 57 6   sets for the entire table.    Since all these pairs are non-isomorphic 

with all previous pairs, produced by Iheorem XIII. 4.1, thus by the method of sum 

composition one can at least produce   12,672   non-isomorphic   0(10,2)   sets. 

We believe that for other values of  n.   there are sets of   {S} and   {T} 

-1 
together with proper projections which makes the restriction   y = x      unnecessary. 

Theorem XIII. 4. 2.     Let  n, =   2   > 8   for any positive integer a .   Then there 

exists an   0(n,2)   set which can be constructed by composition of 0(n.,2) 

and   0(n  ,2)   sets for  n    = n)/2  and   n = n. + n     . 

We shall here give only the method of construction.   A similar argument 

as in theorem XIII. 4.1     will show   that the constructed set is an  0(n,2)   set. 

Construction,   In a similar fashion as in theorem XIII. 4.1 construct the set 

{B(l), B(x), B(y)} over  GF(20') .    Let also   {A^A } beany   0(n  ,2)   set, which 

o 
always exists, on a set    ß  non-intersecting with   GF(2 ) .   For any X. =* 0   in 

GF(2  )   we can find  n /2   pairs of distinct elements belonging to   GF(2 )   such 

that the sum of the two elements of each pair is equal to \ .   Let   {S} and   {T} 

denote the collection of the first and the second elements of these  n]/2  pairs 

respectively.   Note that for a fixed   \   the set   {S}  can be constructed in 

n.(n-2)(n -4)... 1  distinct ways.    Now form   L.   from the sum composition of   B(x) 

and  A.   and   L    from the sum composition of  B(y)  and  A    using the same pro- 

jection rule as given in theorem XIII. 4.1.   Now   {LpL-} is an  0(n,2)   set. 
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Example.    Let   n = 8,   GF(8) = {0,1, 2,... , 7} with the following addition   (+) 

and multiplication   (X)  tables: 

+ 0 1 2 3 4 5 6 7 
0 0 1 2 3 4 5 6 7 
1 I 0 6 4 3 7 2 5 
2 2 6 0 7 5 4 13 
H 3 4 7 0 16 5 2 
4 4 3 5 10 2 7 6 
5 5 7 4 6 2 0 3 1 
6 6 2 1 5 7 3 0 4 
7 7 5 3 2 6 14 0 

Then for x = 2, y = x~   = 7  we have 

tB(l). B(2), B(7)} - 

X 0 1 2 3 4 5 6 7 
0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 
2 0 2 3 4 5 6 7 J 
3 0 3 4 5 6 7 1 2 
4 0 4 5 6 7 I 2 3 
5 0 5 6 7 1 2 3 4 
6 0 6 7 1 2 3 4 5 
7 0 7 1 2 3 4 5 6 

For  n 

0 1 2 3 4 5 6 7 0 12 3 4 5 6 7 0 1 2 3 4 5 6 7 

1 0 6 4 3 7 2 5 2 6 0 7 5 4 1 3 7 5 3 2 6 1 4 0 

2 6 0 7 5 4 1 3 3 4 7 0 1 6 5 2 1 0 6 4 3 7 2 5 

3 4 7 0 1 6 5 2 4 3 5 1 0 2 7 6 2 6 0 7 5 4 1 3 

4 3 5 1 0 2 7 6 5 7 4 6 2 0 3 1 3 4 7 0 1 6 5 2 

5 7 4 6 2 0 3 1 6 2 15 7 3 0 4 4 3 5 1 0 2 7 6 

6 2 I 5 7 3 0 4 7 5 3 2 6 1 4 0 5 7 4 6 2 0 3 1 

7 

2 

5 3 

•V 

2 

2 = 

6 

4 

I 4 

iet 

0 

ß = (A 

10 6 4 

,B,C,D} a 

3 

nd 

7 2 5 6 2 1 5 7 3 0 4 

{A^} 

A B C D 
B A D C 
C   D A B 
D   C B A 

A B   C D 
D C   B A 
B A   D C 
C D  A B 

Finally for   \ = 5,    {S} = {0,1,3,4} and   {T} = {5,7,6,2} we have   {L^}* 

AB2CD567 0 13 4 
BA0DC413 6 2 5 7 
34A01DBC 7 5 2 6 
CD5AB276 10 4 3 
D C 4 B A 0 3 1 2 6 7 5 
62D57ACB 3 4 0 1 
75B26CAD 4 3 10 
10C43BDA 5 7 6 2 
06712345 A B C D 
21360754 B A 0 C 
47635102 C 0 A B 
5 3 17 4 6 2 0 D C B A 

A B 
C D 
B A 

4 A 
6 B 

C B 
D A 

A B 
D C 

4 2 7 
6 3 0 
5 0 3 
17 2 

6 3 5 
4 2 1 
1 7 4 
5 0 6 

5 7 
6 2 
4 3 

BCD 
C B A 
ADC 
DAB 

which is an  0(12,2)   set. 
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Discussion. The necessary requirements for the construction of an 0(n,t) set, 

n = nl + "z* t < "z* by the method of sum composition are: The existence of an 

0(ni>t)   set,   n^tn^,   with at least  tn     common parallel transversals, and an 

0(n  ,t)   set.   These conditions are obviously satisfied whenever  n,   and   n 
* 12 

are prime powers. 

While for some values of  n   there exists only a unique decomposition ful- 

filling the above requirements, for infinitely many other values of  n  there are 

abundant such decompositions. 

It seems that if there exists an   0(n.,2)   set and if  n = n. + n  ,   n. > 2n- 
£ 12        12 

then one can construct an  0(n,2)   set by the method of sum composition if  n. 

is a prime power.   To support this observation and shed some more light on the 

method of sum composition we present in subsequent pages some highlights of the 

results which we hope to complete and submit for publication shortly. 

In the following for each given decomposition of  n   we exhibit an   0(n,2) 

set which has been derived by the method of sum composition.    We shall represent 

the pairs in a form that the curious reader can easily reconstruct the original sets. 

Hereafter the notation   L. i L    means that   L.   is orthogonal to   L     . 

1)     12 = 9 + 3 

ABC456789 12 3 123456ABC 8 9 7 
BCA123456 9 7 8 978312BCA 6 4 5 
CAB789123 5 6 4 564897CAB 12 3 
231564ABC 8 9 7 645ABC312 7 8 9 
897231BCA 4 5 6 231BCA897 5 6 4 
564897CAB 3 12 i.          789CAB456 3 12 
312ABC978 6 4 5 ABC231564 9 7 8 
978BCA645 2 3 1 BCA789123 4 5 6 
64SCAB312 7 8 9 CAB645978 2 3 1 
159672834 ABC 492573681 ABC 
726348591 B C A 357168249 CAB 
48391S267 CAB 816924735 B C A 
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2)     14 = 11 + 3,   the only decomposition which fulfills the necessary require- 

ments. 

A B c 3 4 5 6 7 8 9 10 0 1 2 

B C 9 10 0 1 2 3 4 5 A 6 7 8 
C 4 5 6 7 8 9 10 0 A B 1 2 3 

10 0 1 2 3 4 5 6 A B C 7 8 9 
6 7 8 9 10 0 1 A B C 5 2 3 4 

2 3 4 5 6 7 A B C 0 1 8 9 10 
9 10 0 1 2 A B C 6 7 8 3 4 5 

5 6 7 8 A B C 1 2 3 4 9 10 0 
1 2 3 A B C 7 8 9 10 0 4 5 6 

8 9 A B C 2 3 4 5 6 7 10 0 1 

4_ A B C 8 9 10 0 1 2 _3^ 5 6 J 
0 5 10 4 9 3 8 2 7 1 6 A B C 

7 1 6 0 5 10 4 9 3 8 2 B C A 

3 8 2 7 1 6 0 5 10 4 9 C A B 

0 12 

8 9 10 

5    6   7 

3 

0 

8 

5 

A 

B 

C 

4 

3 

0 

2 

10 

7 
4 

1 

A 

B 

C 

4    5 

1 2 

8 1 10 

5    6   A 

A 

B 

C 

5 

2 

2 

A 

B 

C 

1 

8    9 10 

5    6   7 

6 

3 

A 

7 A 

A B 

B C 

B    C 10 

C    6 7 

3 

0 

B 

C 2 

9 10 

6 7 

3 4 

0 12 

8 9 10 

B 

C 

3 

0 

8 

5 

2 
4 
1 

8    9 10 

5    6 7 

3 4 

0 A 

6 10 3704815 92 

3704815926 10 

926 10   3704815 

9 10 8 

5 6 4 

2 0 

9 7 

5 3 

1 10 

8 6 

4 

0 

7 

3 

1 

8 

4 

0 

7 

3 

10 

6 

2 

ABC 

CAB 

B    C    A 

3)     15 = 12 + 3, 15 = 11 + 4  are the only decompositions which fulfill the neces- 

sary requirements.    However, we consider here the latter decomposition since 

we can utilize the properties of Galois field   GF(ll). 
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6)      We do not know if an   0(15,2)   set with   14   common parallel transversals 
corresponding to the   0(15,3)   set in section V can be combined with an 
0(7,2)   set to form an   0(22,2)   set or if there exists an   0(18,2)   set 
with   8   common parallel transversals.    Therefore, the following   0(22,2) 
sets are derived from the decompositions   22 = 19 + 3   and   22 = 17 + 5 . 

a: 22 - 19 + 3 , 

A B C 3 4 5 6 7 8 9 10 11 12 13 14 15 16 '.7 18 0 1 2 
B C 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 A 2 3 4 
C 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 A B 4 5 6 
9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 A B C 6 7 8 

12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 A B C 11 8 9 10 
15 16 17 18 0 1 2 3 4 5 6 7 8 9 A B C 13 14 10 11 12 
18 0 1 2 3 4 5 6 7 8 9 10 11 A B C 15 16 17 12 13 14 
2 3 4 5 6 7 8 9 10 11 12 13 A B C 17 18 0 1 14 15 16 
5 6 7 8 9 10 11 12 13 14 15 A B C 0 1 2 3 4 16 17 18 
8 9 10 11 12 13 14 15 16 17 A B C 2 3 4 5 6 7 18 0 1 

11 12 13 14 15 16 17 18 0 A B C 4 5 6 7 8 9 10 1 2 3 
14 15 16 17 18 0 1 2 A B C 6 7 8 9 10 11 12 13 3 4 5 
17 18 0 1 2 3 4 A B C 8 9 10 11 12 13 14 15 16 5 6 7 
1 2 3 4 5 6 A B C 10 11 12 13 14 15 16 17 18 0 7 8 9 
4 5 6 7 8 A B C 12 13 14 15 16 17 18 0 1 2 3 9 10 11 
7 8 9 10 A B C 14 15 16 17 18 0 1 2 3 4 5 6 11 12 13 

10 11 12 A B C 16 17 18 0 1 2 3 4 5 6 7 a 9 13 14 15 
13 14 A B C 18 0 1 2 3 4 5 6 7 8 9 10 ii 12 15 16 17 
16 A B C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 0 
0 17 15 13 11 9 7 5 3 1 18 16 14 12 10 8 6 4 i A B C 
3 1 18 16 14 12 10 8 6 4 2 0 17 15 13 11 9 7 5 B C A 
6 4 2 0 17 15 13 11 9 7 5 3 1 18 16 14 12 10 8 C A B 

0 1 2 3 4 5 6 7 8 9 10 11 12 A B C 16 17 18 14 IS 13 
13 14 15 16 17 18 0 1 2 3 4 5 A B C 9 10 11 12 7 8 6 
7 8 9 10 11 12 13 14 15 16 17 A B C 2 3 4 5 6 0 1 18 
1 2 3 4 5 6 7 8 9 10 A B C 14 15 16 17 18 0 12 13 11 

14 15 16 17 18 0 I 2 3 A B C 7 8 9 10 11 12 13 5 6 4 
8 9 10 11 12 13 14 15 A B C 0 1 2 3 4 5 6 7 17 18 16 
2 3 4 5 6 7 8 A B C 12 13 14 15 16 17 18 0 1 10 11 9 

15 16 17 18 0 1 A B C 5 6 7 8 9 10 11 12 13 14 3 4 2 
9 10 11 12 13 A B C 17 18 0 1 2 3 4 5 6 7 8 15 16 14 
3 4 5 6 A B C 10 11 12 13 14 15 16 17 18 0 1 2 8 9 7 
16 17 18 A B C 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 0 
10 11 A B C 15 16 17 18 0 1 2 3 4 5 6 7 8 9 13 14 12 
4 A B C 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 6 7 5 
A B C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 0 17 
B C 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 A 11 12 10 
C 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 A B 4 5 3 

18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A B C 16 17 15 
12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 A B C 11 9 10 8 
6 7 8 9 10 11 12 13 14 15 16 17 18 0 A B C 4 5 2 3 1 

11 18 6 13 1 8 15 3 10 17 5 12 0 7 14 2 9 16 4 A B C 
5 12 0 7 14 2 9 16 4 11 18 6 13 1 8 15 3 10 17 C A B 

17 5 12 0 7 14 2 9 16 4 11 18 6 13 1 8 15 3 10 B C A 
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b: 22 - 17 + 5, 

A   B    C   D    B 5 6 7 8 9 10 11 12 13 14 15 16 0   12   3   4 
B    C   D    E    6 7 8 9 10 11 12 13 14 15 16 0   A 12   3   4   5 
C    D    E    7    8 9 10 11 12 13 14 15 16 0   1 A   B 2    3   4    5    6 
D    E    8    9 10 11 12 13 14 15 16 0 1 2   A B    C 3   4   5    6   7 
E    9 10 11 12 13 14 15 16 0 1 2 3 A   B C   D 4   5    6   7    8 

10 11 12 13 14 15 16 0 1 2 3 4 A B    C D   E 5    6   7   8    9 
12 13 14 15 16 0 1 2 3 4 5 A B C   D E 11 6   7   8    9 10 
14 IS 16    0    1 2 3 4 5 6 A B C D    E 12 13 7   8    9 10 11 
16   0    1    2    3 4 5 6 7 A B C 0 E 13 14 15 8   9 10 11 12 
12    3   4    5 6 7 8 A B C D E 14 15 16   0 9 10 11 12 13 
3   4   5    6    7 8 9 A B C D E 15 16   0 1    2 10 11 12 13 14 
5    6   7   8    9 10 A B C D E 16 0 1   2 3   4 11 12 13 14 15 
7    8    9 10 11 A B C D E 0 1 2 3   4 5    6 12 13 14 15 16 
9 10 11 12    A B C D E 1 2 3 4 5    6 7   8 13 14 15 16   0 

11 12 13   A   B C D E 2 3 4 5 6 7    8 9 10 14 15 16   0   1 
13 14   A   B    C D E 3 4 5 6 7 8 9 10 11 12 15 16   0    1    2 
15    A   B    C   D -S- JL 5 JL _L _L _L 10 11 12 13 14 16   0   1    2   3 
0 16 15 14 13 12 11 10 9 8 7 6 5 4   3 2    1 ABODE 
2    1   0 16 15 14 13 12 11 10 9 8 7 6   5 4    3 B    C   D    E    A 
4    3    2    10 16 15 14 13 12 11 10 9 8   7 6   5 C   D    E    A    B 
6   5   4   3    2 1 0 16 15 14 13 12 11 10   9 8   7 D    E   A   B    C 
8    7    6   5    4 3 2 1 0 16 15 14 13 12 11 10   9 B    A   B    C   D 

0    12    3 4    5    678ABCDE14 15 16 10 11 12 13    9 
9 10 11 12 13 14 15 16   A   B    C   D   E    5    6   7   8 1    2 3   4   0 
12    3    4 5    6   7   A   B    C   D   E 13 14 15 16   0 9 10 11 12    8 

10 11 12 13 14 15ABCDE456789 0    1 2    3 16 
2    3   4   5 6   A   B    C   D   E 12 13 14 15 16   0    1 8    9 10 11    7 

11 12 13 14 ABCDE3456789 10 16   0 1    2 15 
3    4   5   A B    C   D   E 11 12 13 14 15 16   0    1    2 7   8 9 10   6 

12 13    AB CDE23456789 10 11 15 16 0    1 14 
4    A   B    C 0    E 10 11 12 13 14 15 16   0    1    2    3 6    7 8    9   5 
A   B    C   D El    2345    678    9 10 11 12 14 15 16   0 13 
BODE 9 10 11 12 13 14 15 16   0    1    2   3   A 5    6 7   8   4 
C    D    E    0 1    2345    6789 10 11   AB 13 14 15 16 12 
D    E    8    9 10 11 12 13 14 15 16   0    1    2   A   B    C 4   5 6   7    3 
E 16   0    1 23456789 10   ABCD 12 13 14 15 11 
7    8    9 10 11 12 13 14 15 16   0    1    A   B    C   D   E 3   4 5    6   2 

16    0    1    2 3456789ABCDE15 11 12 13 14 10 
8    9 10 11 12 13 14 15 16    0    A   B    C    D    E    6    7 2    3 4   5    1 
5 14    6 15 7 16   8   0    9   1 10   2 11    3 12   4 13 A   B C   D   E 

14    6 15    7 16   8   0    9   1 10   2 11    3 12   4 13   5 E    A BCD 
6 15    7 16 8   0    9   1 10    2 11   3 12   4 13   5 14 D    E ABC 

15    7 16   8 0    9   1 10   2 11   3 12   4 13   5 14   6 C   D E    A   B 
13    5 14    6 15    7 16   8   0    9   1 10    2 11    3 12   4 B    C D    E    A 
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XIV.   Computer Construction of 0(10, t) Sets 

In about fifteen years the effectiveness of computers in searching for 

orthogonal sets of latin squares of order ten has increased strikingly.   Still 

the problem is so large that there seems to be little reason for optimism that the 

order ten problem can be completed by computers.   More precisely, if (as most 

conversant with the problem consider quite plausible) no   0(10,3)   set of 

orthogonal latin squares of order ten exists, then the number of cases to con- 

sider seems too large for an exhaustive proof by computer to be achievable.   The 

number of latin squares of order ten is astronomical. 

About 1953 Paige and Tompkins [I960] programmed SWAC to search for 

squares orthogonal to a fixed latin square of order tan.   A few hours of running 

produced no orthogonal square, and was regarded as a bit of experimental evi- 

dence for the truth of Euler's conjecture.   Calculations based on the progress 

made in the search led to the extrapolation that over fifty million years of computer 

time would be required to search for all squares orthogonal to a latin square of 

order ten put into SWAC intially.   (At about the same time a similar program was 

written and similar results obtained with   MANIAC at Los Alamos; this attempt 

has not been reported in print.) 

In 19 59, after Euler's conjecture had been disproved for all orders 

41 + 2 > 6,    Parker programmed   UNIVAC 1206   to search for squares orthogonal 

to a latin square of order ten.   The running time was sharply less than for   SWAC 

or MANIAC, about thirty minutes for the majority of latin squares.    This was 

accomplished by generating and storing all transversals of the input latin square, 
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then searching for all ways to form latin squares from the list of transversals. 

(A transversal,, or directrix, is a set of cells of a latin square, one in each row, 

om in each column, and one containing each digit.)   The striking gain in speed 

over the earlier efforts occurred largely because the number of transversals of 

a typical latin square of order ten is roughly  850,   much less than   101 ;   and, 

of course, the search was several levels deep.   (SWAC and MANIAC were pro- 

grammed to build up starts of latin squares toward orthogonal mates by filling in 

cells to form rows.) 

There were two main outcomes from considerable running of Parker's 1206 

program:  1)   0(10,3)   sets of latin squares are not numerous; more precisely, 

only a small fraction, if any, order ten squares could possibly extend to  0(10,3) 

sets.   Some   400   latin squares were run.   Some were random, some were com- 

puter output fed back as input and hence known to have an orthogonal mate, and 

some were considered interesting candidates for intuitive reasons by Parker and 

others.   Not once did an exhaustive search for orthogonal mates of an input latin 

square discover a pair orthogonal to one another.   Mild evidence may be claimed 

supporting the opinion that no  0(10,3)   set exists.   2)  Of a computer-generated 

sample of  100   random latin squares of order ten (program by R. T. Ostrowski), 

62   have orthogonal mates.   Thus, unlike   0(10,3)   sets,   0(10,2)   sets of squares 

are quite common.   Euler's intuition for order ten was not only wrong, but in this 

sense wrong by a large margin.   It was this finding which tempted Parker for a 

time to believe that repeated runs of the program should have a good chance of 

producing at an   0(10,3)  set, but many failures dimmed this optimism, 
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In 1967 John W.  Brown programmed IBM 7094 to decide whether an input 

latin square of order ten can be extended to an   0(10,3)   set.    The running time 

was one half minute.   Almost needless to say, transversals again were generated. 

Searching for patterns of transversals toward extension to an   O{10,3)   set pro- 

duced a speed gain over the previous program for orthogonal pairs.   Brown 

endeavored to get every drop of speed from the machine.   As before, hundreds 

of input order-ten latin squares produced no   0(10,3)   set. 
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XV.   On the Equivalence of 0(n. t) Sets With Other Combinatorial Systems 

XV. 0.    Summary 

In this section we have densely summarized some of the results obtained 

by author and at least fourteen others in order to demonstrate the importance of 

the theory of mutually orthogonal latin squares.   We have shown that fourteen 

well-known and important combinatorial systems with certain parameters are 

actually equivalent to a set of mutually orthogonal latin squares.   A schematic 

representation of these equivalences has been demonstrated in four wheels which 

we have called "Fundamental Wheels of Combinatorial Mathematics". 

XV. 1.   Introduction 

The theory of mutually orthogonal latin squares owes its importance to the 

fact that many well-known combinatorial systems are actually equivalent to a 

set of mutually orthogonal latin squares; viz.. finite projective plane, finite 

Euclidean plane, net, BIB, PBIB, orthogonal arrays, a set of mutually orthogonal 

matrices, error correcting codes, strongly regular graphs, complete graphs, a 

balanced set of i-restrictional lattice designs, difference sets, Hadamard 

matrices, and an arrangement of non attacking rooks on hyperdimensional chess 

board.   These combinatorial systems are unquestionably potent and effective in 

all branches of combinatorial mathematics, and in particular, in the construction 

of experimental designs.   Therefore, a statement that the theory of mutually 

orthogonal latin squares is perhaps the most important theory in the field of 

experiment designs is not in the least exaggerated as far as this author is con- 

cerned. 
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Our purpose In this section is to demonstrate the relation of a set of 

mutually orthogonal latin squares with the above mentioned combinatorial systems. 

We shall present the essence of the known results available only in scattered 

literature in one theorem which we consider to be a   "fundamental theorem of 

combinatorial mathematics".   For the definitions of these combinatorial systems 

and the proof of the forthcoming theorem see the list of references given at the 

end of this paper. 

XV. 2.   Notation 

For the sake of conciseness we introduce the following notations: 

0) 0(n,t)  denotes a set of  t   mutually orthogonal latin squares of order 

n   . 

1) MOM(n,t)  denotes a set of  t  mutually orthogonal  nX n   matrices. 

2 
2) OA(n,t)  denotes a set of orthogonal arrays of size   n  ,   depth  t, n 

levels, and strength   2 . 

3) Net(n,t)  denotes a net of order  n  and degree  t . 

4) Code(n,r,t;m)  denotes a set of  n  code words each of length  r  such 

that any two code words are at least at Hamming distance   > t  on an 

m-set  2  with   m   distinct elements.   We remind the reader thai such 

a code is also called   (t-l)-error detecting code or   (t-l)/2-error cor- 

recting code because such a code is capable of detecting up to   t-1 

errors and correct up to   (t-l)/2   errors in each transmitted code word. 

5) PBIB(b, v,r,k,\..,\2)  denotes a partially balanced incomplete block 

design with   b  blocks each of size  k, v  treatments with   r   replication 

of each, and association indices   \.   and  \     . 
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6) SR-Graph   (A)   denotes the strongly regular graph with incidence 

matrix  A . 

7) Non #(n,t)  denotes an arrangement of  n   mutually non attacking 

rooks on the t-dimensional  n X n   chess board. 

8) PG(2,s)   denotes a finite projective plane of order   s   (not necessarily 

Desarguesian). 

9) ^(2,3)   denotes a finite Euclidean plane of order   s   . 

10) BIB(b,v,r,k,X.)  denotes a balanced incomplete block design with  b 

blocks each of size   k, v  treatments with  r replications of each, and 

association index  \   . 

11) K-Graph   (A)   denotes the complete graph with incidence matrix  A  . 

12) DIF(v,k,\)  denotes a difference set with parameters   v, k, and  \ . 

13) BLRL(s) denotes a balanced set of i-restrictional lattice design for 

s treatments. Note that a 1-restrictional balanced lattice design is 

simply a   BIB  design. 

14) HAD(n)  denotes a symmetric normalized Hadamard matrix of order  n . 

Hereafter we also adopt the following two notations: 

i)     A <5s=> B   means  A  implies   B  and   B  implies  A  . 

ii)     A   ==i> B   means  A  implies   B .   Whether or not   B   implies   A  is 

unstated. 
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XV. 3.   The Result 

Theorem 

(a)     For any pair of positive Integers   n   and   t   we have; 

1)     0(n,t) <=£> MOM(n,t+2) 

Z)    0(n,t) <r=i>  OA(n,t+2) 

Net(n,t+2) 

2 
Code(n  ,t+2, t+l;n) 

2 

3) 0(n,t) 

4) 0(n,t) 

5) 0(n,t)   <=^ PBIB(n",n(t+2), n,t+2,0,l) 

6) 0(n,t)   <=?> SR-Graph   (A)  where   A  is the incidence matrix associated 

with   PBIB   in   5). 

7) 0(n,t)   <==> Non #{n2,nt+2) . 

(b)     H t = n-1  then also; 

8) 0(n,n-l 

9) 0(n,n-l 

10) 0(n,n-l 

11) 0(n,n-l 

12) 0(n,n-l 

PG(2,n) 

^(2,n) 

2 2 
<=> BIB(n +n+l, n +n+l, n+1, n+1,1) 

2 2 
<=> Code(n +n+l, n +n+l, 2n;2) 

<=«> K-Graph   (A)  where   A   is the incidence 

matrix associated with   BIB  in 10) 

13)    0(n,n-l) <*=£> DIF(n2+n+l, n+1,1)   . 

(c)   If  n = p     where   p   is a prime and   m   is a positive integer then also the 

following: 

H)     0(p   ,p  -1) BLRL(pm) 
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(d)   If   n = 2r  and  t = r-2, r > 3   then the following are also true; 

15) 0(2r,r-2) =S^HAD(4r2) 

16) 0(2r,r-2) =i> BIB(4r2 - 1, 4r2-l, 2r2-l, 2r2-l, r2-l) 

17) 0(2r,r-2) => Code(4r2-l, 4r2-l, 2r2;2) 

18) 0(2r,r-2) ==> Code(8r2, 4r2, 2r2;2) 

19) 0(2r,r-2) =i> DIF(4r2-l, 2r2-l, r2-l)   . 

A complete schematic representation of this theorem can be demonstrated 

in four wheels which will be called "fundamental wheels of combinatorial mathe- 

matics".    For the sake of compactness we shall omit the associated parameters 

with each system in these wheels except for  0{n,t) .   By knowing the values 

of  n  and   t   in the given   0(n,t)   sets,then the reader can easily find the 

associated parameters with other systems in the wheels from the proper part of 

the above theorem. 
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Wheel 1.   For any positive integer   n   and   t   . 
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Wheel 2.    For any positive Integer  n   . 

• 
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Wheel 3.   For any prime 
P   and positive integer   m 

#1030 
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DIF HAD 

Wheel 4.    For any positive integer   r > 3 

(see also wheel 1) 
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